Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Autonomous, Adaptive, and Self-Organized Multiagent Systems for the Optimization of Decentralized Industrial Processes

  • Chapter
  • First Online:
Intelligent Agents in Data-intensive Computing

Part of the book series: Studies in Big Data ((SBD,volume 14))

Abstract

This chapter presents the concepts, an example implementation, and the evaluation of an autonomous, self-organized, and adaptive multiagent system to optimize industrial processes in dynamic environments. In order to satisfy the rising requirements which result from the Fourth Industrial Revolution and to benefit from the consequent integration of the Internet of Things and Services, the system is designed to link the data of highly decentralized entities to virtual representatives. The goal0 is to mesh complex information and material flows as well as their interdependencies in order to achieve an integrated optimization of production and logistic processes. Due to the high dynamics, the domain of courier and express services provides one of the most challenging environments, in which a high amount of decentralized data and information has to be considered, updated, and processed continuously during operations. The chapter summarizes the state-of-the-art of agent-based approaches in transport logistics and describes the limitations for their application in Industry 4.0 processes. Next, it presents the developed dispAgent approach, the applied coordination and negotiation protocols for the synchronization in highly parallelized negotiations, as well as the solver which have been developed for the individual decision making of the autonomously acting agents. The system is evaluated on two established benchmarks for the Vehicle Routing Problem as well as by a case study with real-world data which was conducted in cooperation with our industrial partner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Foundation for Intelligent Physical Agents (for more information see: http://www.fipa.org/ (cited: 22.09.2014)).

  2. 2.

    With the exception of the unlikely case that a negotiation is canceled after the order has been removed from the former vehicle.

  3. 3.

    http://www.openstreetmap.org (cited: 22.09.14).

  4. 4.

    http://www.sintef.no/Projectweb/TOP/VRPTW/ (cited: 22.09.2014).

  5. 5.

    http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/800-customers/(cited: 22.9.2014).

  6. 6.

    http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/400-customers/ (cited: 22.9.2014).

  7. 7.

    http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-benchmark/100-customers/ (cited: 22.9.2014).

References

  1. Abraham, I., Delling, D., Goldberg, A., Werneck, R.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P., Rebennack, S. (eds.) Experimental Algorithms. Lecture Notes in Computer Science, vol. 6630, pp. 230–241. Springer, Berlin (2011)

    Chapter  Google Scholar 

  2. Abraham, I., Delling, D., Goldberg, A., Werneck, R.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) Algorithms ESA 2012. Lecture Notes in Computer Science, vol. 7501, pp. 24–35. Springer, Berlin (2012)

    Chapter  Google Scholar 

  3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ, USA (2007)

    Google Scholar 

  4. Barbucha, D. Jedrzejowicz, P.: Multi-agent platform for solving the dynamic vehicle routing problem. In: Proceeding of the eleventh International IEEE Conference on Intelligent Transportation Systems, pp. 517–522 (2008)

    Google Scholar 

  5. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester, UK (2007)

    Book  Google Scholar 

  6. Bräysy, O., Dullaert, W., Gendreau, M.: Evolutionary algorithms for the vehicle routing problem with time windows. J. Heuristics 10(6), 587–611 (2004)

    Article  Google Scholar 

  7. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: route construction and local search algorithms. Transp. Sci. 39(1), 104–118 (2005)

    Article  Google Scholar 

  8. Bürckert, H.-J., Fischer, K., Vierke, G.: Holonic transport scheduling with teletruck. Appl. Artif. Intell. 14(7), 697–725 (2000)

    Article  Google Scholar 

  9. Cazenave, T.: Nested Monte-Carlo search. In: Proceeding of the 21st International Jont Conference on Artifical Intelligence, IJCAI’09, San Francisco, CA, USA, pp. 456–461. Morgan Kaufmann Publishers Inc (2009)

    Google Scholar 

  10. Cazenave, T.: Monte Carlo beam search. IEEE Trans. Comput. Intell. AI Games 4(1), 68–72 (2012)

    Article  Google Scholar 

  11. Christofides, N.: Worst-Case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976)

    Google Scholar 

  12. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12, 568–581 (1964)

    Article  Google Scholar 

  13. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., Wernstedt, F.: An analysis of agent-based approaches to transport logistics. Transp. Res. Part C: Emerg. Technol. 13(4), 255–271 (2005) (Agents in Traffic and Transportation: Exploring Autonomy in Logistics, Management, Simulation, and Cooperative Driving)

    Google Scholar 

  15. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dorer, K., Calisti, M.: An adaptive solution to dynamic transport optimization. In: Proceeding of the fourth International Joint Conference on Autonomous and Multiagent Systems, AAMAS’05, ACM, New York, NY, USA, pp. 45–51 (2005)

    Google Scholar 

  17. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. Biosystems 43(2), 73–81 (1997)

    Article  Google Scholar 

  18. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.: An optimal algorithm for the travelling salesman problem with time windows. Oper. Res. 43(2), 367–371 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Edelkamp, S. Gath, M.: Optimal decision making in agent-based autonomous groupage traffic. In: Filipe, J., Fred, A.L.N. (eds.) Proceeding of the fifth International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, Barcelona, Spain, pp. 248–254. SciTePress (2013)

    Google Scholar 

  20. Edelkamp, S., Gath, M.: Solving single-vehicle pickup-and-delivery problems with time windows and capacity constraints using nested Monte-Carlo search. In Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.), Proceeding of the sixth International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, Angers, France, pp. 22–33. SciTePress (2014)

    Google Scholar 

  21. Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge engineering for the tsptw problem. In: Proceeding of the IEEE Symposium on Computational Intelligence in Scheduling (CISched) Singapur (2013)

    Google Scholar 

  22. Fischer, K., Müller, J.P., Pischel, M.: Cooperative transportation scheduling: an application domain for DAI. J. Appl. Artif. Intell. 10(1), 1–33 (1996)

    Article  Google Scholar 

  23. Gath, M., Edelkamp, S., Herzog, O.: Agent-based dispatching enables autonomous groupage traffic. J. Artif. Intell. Soft Comput. Res. (JAISCR) 3(1) (2013)

    Google Scholar 

  24. Gath, M., Herzog, O., Vaske, M.: The impact of shortest path searches to autonomous transport processes. In: Proceeding of the fourth International Conference on Dynamics in Logistics (LDIC) Bremen, Germany. Accepted for publication (2014)

    Google Scholar 

  25. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  26. Gendreau, M., Bräysy, O.: Vehicle routing problem with time windows, part ii: metaheuristics. Transp. Sci. 39, 119–139 (2005)

    Article  Google Scholar 

  27. Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real time scheduling system for taxi companies. In: Proceeding of the eighth International Conference on Autonomous Agents and Multiagent Systems, AAMAS’09, pp. 29–36 (2009)

    Google Scholar 

  28. Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O., Sitharam, T.G.: Enhanced shortest path computation for multiagent-based intermodal transport planning in dynamic environments. In: Filipe, J., Fred, A.L.N. (eds.) Proceeding of the fifth International Conference on Agents and Artificial Intelligence (ICAART), vol. 2, Barcelona, Spain, pp. 324 – 329 (2013)

    Google Scholar 

  29. Himoff, J., Rzevski, G., Skobelev, P.: Magenta technology multi-agent logistics i-scheduler for road transportation. In: Proceeding of the fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS’06, ACM, New York, NY, USA, pp. 1514–1521 (2006)

    Google Scholar 

  30. Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA technology: multi-agent systems for industrial logistics. In: Proceeding of the fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS’05, ACM, New York, NY, USA, pp. 60–66 (2005)

    Google Scholar 

  31. Homberger, J., Gehring, H.: A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. Eur. J. Oper. Res. 162, 220–238 (2005)

    Article  MATH  Google Scholar 

  32. Hülsmann, M., Scholz-Reiter, B., Windt, K. (eds.): Autonomous Cooperation and Control in Logistics: Contributions and Limitations - Theoretical and Practical Perspectives. Springer, Berlin (2011)

    Google Scholar 

  33. Kagemann, H., Wahlster, W., Helbig, J.: (2013). Recommendations for implementing the strategic initiative Industrie 4.0—-final report of the Industrie 4.0 working group. Technical Report, acatech

    Google Scholar 

  34. Kalina, P., Vokrinek, J.: Parallel solver for vehicle routing and pickup and delivery problems with time windows based on agent negotiation. In: Proceeding of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1558–1563 (2012)

    Google Scholar 

  35. Kohout, R., Erol, K.: In-Time agent-based vehicle routing with a stochastic improvement heuristic. In: Proceeding of the 16th Conference on Artificial Intelligence and the 11th on Innovative Applications of Artificial Intelligence (AAAI/IAAI 1999), Menlo Park, CA, pp. 864–869. AAAI Press (1999)

    Google Scholar 

  36. Leong, H.W., Liu, M.: A Multi-agent algorithm for vehicle routing problem with time window. In: Proceeding of the 2006 ACM Symposium on Applied Computing, SAC’06, ACM, New York, NY, USA, pp. 106–111 (2006)

    Google Scholar 

  37. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44(10), 2245–2269 (1965)

    Article  MATH  Google Scholar 

  38. MacQueen, J. et al.: Some methods for classification and analysis of multivariate observations. In: Proceeding of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, pp. 281–297. California, USA (1967)

    Google Scholar 

  39. Mahr, T., Srour, J., de Weerdt, M., Zuidwijk, R.: Can agents easure up? a comparative study of an agent-based and on-line optimization approach for a drayage problem with uncertainty. Transp. Res. Part C: Emerg. Technol. 18(1), 99–119 (2010)

    Article  Google Scholar 

  40. Mes, M., van der Heijden, M., van Harten, A.: Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. Eur. J. Oper. Res. 181(1), 59–75 (2007)

    Article  MATH  Google Scholar 

  41. Müller, H.J.: Towards agent systems engineering. Data Knowl. Eng. 23(3), 217–245 (1997)

    Article  MATH  Google Scholar 

  42. Nalepa, J., Blocho, M., Czech, Z.: Co-operation schemes for the parallel memetic algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waniewski, J. (eds.) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, pp. 191–201. Springer, Berlin (2014)

    Chapter  Google Scholar 

  43. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems part ii: transportation between pickup and delivery locations. J. für Betriebswirtschaft 58(2), 81–117 (2008)

    Article  Google Scholar 

  44. Perugini, D., Lambert, D., Sterling, L., Pearce, A.: A distributed agent approach to global transportation scheduling. In: Proceeding of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT 2003), pp. 18–24 (2003)

    Google Scholar 

  45. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In: Proceeding of the 23st International Jont Conference on Artifical Intelligence, IJCAI’11, pp. 649–654. AAAI Press (2011)

    Google Scholar 

  46. Schillo, M., Kray, C., Fischer, K.: The eager bidder problem: a fundamental problem of DAI and selected solutions. In: Proceeding of the first International Joint Conference on Autonomous Agents and Multiagent Systems: Part 2, AAMAS’02, ACM, New York, NY, USA, pp. 599–606 (2002)

    Google Scholar 

  47. Scholz-Reiter, B., Windt, K., Kolditz, J., Böse, F., Hildebrandt, T., Philipp, T., Höhns, H.: New concepts of modelling and evaluating autonomous logistic processes. In: Proceeding of the IFAC Manufacturing, Modelling, Management and Control, Athens, Greece (2004)

    Google Scholar 

  48. Schuldt, A.: Multiagent Coordination Enabling Autonomous Logistics. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  49. Schuldt, A., Hribernik, K.A., Gehrke, J.D., Thoben, K.-D., Herzog, O.: Cloud computing for autonomous control in logistics. In: Fähnrich, K.-P. Franczyk, B. (eds.) Proceeding of the 40th Annual Conference of the German Society for Computer Science, vol. 1 of Lecture Notes in Informatics, Leipzig, Germany, pp. 305–310. Gesellschaft für Informatik (2010)

    Google Scholar 

  50. Skobelev, P.: Multi-Agent systems for real time resource allocation, scheduling, optimization and controlling: industrial applications. In: Maík, V., Vrba, P., Leitão, P. (eds.) Holonic and Multi-Agent Systems for Manufacturing. Lecture Notes in Computer Science, vol. 6867, pp. 1–14. Springer, Berlin (2011)

    Chapter  Google Scholar 

  51. Smith, R.G.: Communication and control in a distributed problem solver. IEEE Trans. Comput. C29(12), 1104–1113 (1980)

    Article  Google Scholar 

  52. Solomon, M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35, 254–265 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  53. Thangiah, S.R., Shmygelska, O., Mennell, W.: An agent architecture for vehicle routing problems. In: Proceeding of the 2001 ACM Symposium on Applied Computing, SAC’01, ACM, New York, NY, USA, pp. 517–521 (2001)

    Google Scholar 

  54. van Lon, R.R., Holvoet, T., Vanden Berghe, G., Wenseleers, T., Branke, J.: Evolutionary synthesis of multi-agent systems for dynamic Dial-a-ride problems. In: Proceeding of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO’12, ACM, New York, NY, USA, pp. 331–336 (2012)

    Google Scholar 

  55. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)

    Article  Google Scholar 

  56. Vokřínek, J., Komenda, A., Pěchouček, M.: Agents towards vehicle routing problems. In: Proceeding of the ninth International Conference on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS’10, Richland, SC, pp. 773–780. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  57. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards ontology-based multiagent simulations: the PlaSMA approach. In: Bargiela, A., Azam Ali, S., Crowley, D., Kerckhoffs, E.J. (eds.) Proceeding of the European Conference on Modelling and Simulation (ECMS), pp. 50 – 56 (2010)

    Google Scholar 

  58. Windt, K.: Ermittlung des angemessenen Selbststeuerungsgrades in der Logistik - Grenzen der Selbststeuerung. In: Nyhuis, P. (ed.) Beiträge zu einer Theorie der Logistik, pp. 349–372. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  59. Wooldridge, M.: An Introduction to Multiagent Systems, 3rd edn. Wiley, New York (2009)

    Google Scholar 

  60. Yan, X., Diaconis, P., Rusmevichientong, P., Roy, B.V.: Solitaire: man versus machine. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1553–1560. MIT Press, Cambridge, MA (2004)

    Google Scholar 

  61. Zhenggang, D., Linning, C., Li, Z.: Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Sci. Technol. 14(3), 407–412 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The presented research was partially funded by the German Research Foundation (DFG) under reference number HE 989/14-1 (project Autonomous Courier and Express Services) at the University Bremen, Germany. The simulations were partially performed on the supercomputer at the North German Cooperation for High-Performance Computing (HLRN). This support is gratefully acknowledged by the authors. In addition, we thank our industrial partners for a great cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otthein Herzog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gath, M., Herzog, O., Edelkamp, S. (2016). Autonomous, Adaptive, and Self-Organized Multiagent Systems for the Optimization of Decentralized Industrial Processes. In: Kołodziej, J., Correia, L., Manuel Molina, J. (eds) Intelligent Agents in Data-intensive Computing. Studies in Big Data, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-23742-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23742-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23741-1

  • Online ISBN: 978-3-319-23742-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics