Abstract
Intuitionistic fuzzy inference systems (IFISs) incorporate imprecision in the construction of membership functions present in fuzzy inference systems. In this paper we design intuitionistic fuzzy neural networks to adapt the antecedent and consequent parameters of IFISs. We also propose a mean of maximum defuzzification method for a class of Takagi-Sugeno IFISs and this method is compared with the center of area and basic defuzzification distribution operator. On credit scoring data, we show that the intuitionistic fuzzy neural network trained with gradient descent and Kalman filter algorithms outperforms the traditional ANFIS method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Transactions on Fuzzy Systems 8(5), 535–550 (2000)
Hagras, H., Wagner, C.: Towards the Widespread Use of Type-2 Fuzzy Logic Systems in Real World Applications. IEEE Computational Intelligence Magazine 7(3), 4–24 (2012)
Zarandi, F., et al.: A Type-2 Fuzzy Rules-based Expert System Model for Stock Price Analysis. Expert Systems with Applications 36, 139–154 (2009)
Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Transactions on Fuzzy Systems 14(6), 808–821 (2006)
Olej, V., Hájek, P.: IF-Inference systems design for prediction of ozone time series: the case of pardubice micro-region. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 1–11. Springer, Heidelberg (2010)
Olej, V., Hájek, P.: Comparison of fuzzy operators for if-inference systems of takagi-sugeno type in ozone prediction. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) EANN/AIAI 2011, Part II. IFIP AICT, vol. 364, pp. 92–97. Springer, Heidelberg (2011)
Hájek, P., Olej, V.: Adaptive intuitionistic fuzzy inference systems of takagi-sugeno type for regression problems. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 381, pp. 206–216. Springer, Heidelberg (2012)
Hájek, P., Olej, V.: Defuzzification methods in intuitionistic fuzzy inference systems of takagi-sugeno type. The case of corporate bankruptcy prediction. In: The 11th Int. Conf. on on Fuzzy Systems and Knowledge Discovery (FSKD 2014), Xiamen, China, pp. 240–244 (2014)
Shing, J., Jang, R.: ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)
Loganathan, C., Girija, K.V.: Hybrid Learning for Adaptive Neuro Fuzzy Inference System. International Journal of Engineering and Science 2(11), 6–13 (2013)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999)
Dubois, D., Prade, H.: Interval-valued fuzzy set, possibility theory and imprecise probability. In: Proc. of the Joint 4th Conf. of the European Society for Fuzzy Logic and Technology, EUSFLAT/ LFA, Barcelona, Spain, pp. 314–319 (2005)
Akram, M.S., et al.: Intuitionistic Fuzzy Logic Control for Washing Machines. Indian Journal of Science and Technology 7(5), 654–661 (2014)
Castillo, O., et al.: An Intuitionistic Fuzzy System for Time Series Analysis in Plant Monitoring and Diagnosis. Applied Soft Computing 7(4), 1227–1233 (2007)
Hájek, P.: Credit Rating Analysis using Adaptive Fuzzy Rule-Based Systems: An Industry Specific Approach. Central European Journal of Operations Research 20(3), 421–434 (2012)
Hájek, P., Olej, V.: Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013, Part II. CCIS, vol. 384, pp. 1–10. Springer, Heidelberg (2013)
Atanassov, K.T.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61(2), 137–142 (1994)
Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties. Fuzzy Sets and Systems 143, 5–26 (2004)
Barrenechea, E.: Generalized atanassov’s intuitionistic fuzzy index. Construction Method. In: IFSA-EUSFLAT, Lisbon, pp. 478–482 (2009)
Deschrijver, G., Cornelis, C., Kerre, E.: On the Representation of Intuitionistic Fuzzy t-norm and t-conorm. IEEE Transactions on Fuzzy Systems 12, 45–61 (2004)
Angelov, P.: Crispification: Defuzzification over Intuitionistic Fuzzy Sets. BUSEFAL 64, 51–55 (1995)
Angelov, P.: Multi-Objective Optimisation in Air-Conditioning Systems: Comfort/Discomfort Definition by IF Sets. Notes on Intuitionistic Fuzzy Sets 7(1), 10–23 (2001)
Chiu, S.: Fuzzy Model Identification based on Cluster Estimation. Journal of Intelligence and Fuzzy Systems 2, 267–278 (1994)
Loughran, T., McDonald, B.: When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance 66(1), 35–65 (2011)
Hall, M.A.: Correlation-based Feature Selection for Machine Learning. Doctoral dissertation, The University of Waikato (1999)
Bernardo, D., Hagras, H., Tsang, E.: A Genetic Type-2 Fuzzy Logic based System for the Generation of Summarised Linguistic Predictive Models for Financial Applications. Soft Computing 17(12), 2185–2201 (2013)
Huarng, K., Yu, H.K.: A Type-2 Fuzzy Time Series Model for Stock Index Forecasting. Statistical Mechanics and its Applications 353, 445–462 (2005)
Sotirov, S., Atanassov, K.: Intuitionistic fuzzy feed forward neural network. Cybernetics and Information Technologies 9(2), 71–76 (2009)
Chen, L.H., Tu, C.C.: Time-validating-based Atanassov’s Intuitionistic Fuzzy Decision-making. IEEE Transactions on Fuzzy Systems. doi:10.1109/TFUZZ.2014.2327989
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hájek, P., Olej, V. (2015). Intuitionistic Fuzzy Neural Network: The Case of Credit Scoring Using Text Information. In: Iliadis, L., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2015. Communications in Computer and Information Science, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-23983-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-23983-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23981-1
Online ISBN: 978-3-319-23983-5
eBook Packages: Computer ScienceComputer Science (R0)