Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intuitionistic Fuzzy Neural Network: The Case of Credit Scoring Using Text Information

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 517))

Abstract

Intuitionistic fuzzy inference systems (IFISs) incorporate imprecision in the construction of membership functions present in fuzzy inference systems. In this paper we design intuitionistic fuzzy neural networks to adapt the antecedent and consequent parameters of IFISs. We also propose a mean of maximum defuzzification method for a class of Takagi-Sugeno IFISs and this method is compared with the center of area and basic defuzzification distribution operator. On credit scoring data, we show that the intuitionistic fuzzy neural network trained with gradient descent and Kalman filter algorithms outperforms the traditional ANFIS method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Transactions on Fuzzy Systems 8(5), 535–550 (2000)

    Article  Google Scholar 

  2. Hagras, H., Wagner, C.: Towards the Widespread Use of Type-2 Fuzzy Logic Systems in Real World Applications. IEEE Computational Intelligence Magazine 7(3), 4–24 (2012)

    Article  Google Scholar 

  3. Zarandi, F., et al.: A Type-2 Fuzzy Rules-based Expert System Model for Stock Price Analysis. Expert Systems with Applications 36, 139–154 (2009)

    Article  Google Scholar 

  4. Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Transactions on Fuzzy Systems 14(6), 808–821 (2006)

    Article  Google Scholar 

  5. Olej, V., Hájek, P.: IF-Inference systems design for prediction of ozone time series: the case of pardubice micro-region. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 1–11. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Olej, V., Hájek, P.: Comparison of fuzzy operators for if-inference systems of takagi-sugeno type in ozone prediction. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) EANN/AIAI 2011, Part II. IFIP AICT, vol. 364, pp. 92–97. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Hájek, P., Olej, V.: Adaptive intuitionistic fuzzy inference systems of takagi-sugeno type for regression problems. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 381, pp. 206–216. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Hájek, P., Olej, V.: Defuzzification methods in intuitionistic fuzzy inference systems of takagi-sugeno type. The case of corporate bankruptcy prediction. In: The 11th Int. Conf. on on Fuzzy Systems and Knowledge Discovery (FSKD 2014), Xiamen, China, pp. 240–244 (2014)

    Google Scholar 

  9. Shing, J., Jang, R.: ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)

    Article  Google Scholar 

  10. Loganathan, C., Girija, K.V.: Hybrid Learning for Adaptive Neuro Fuzzy Inference System. International Journal of Engineering and Science 2(11), 6–13 (2013)

    Google Scholar 

  11. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  13. Dubois, D., Prade, H.: Interval-valued fuzzy set, possibility theory and imprecise probability. In: Proc. of the Joint 4th Conf. of the European Society for Fuzzy Logic and Technology, EUSFLAT/ LFA, Barcelona, Spain, pp. 314–319 (2005)

    Google Scholar 

  14. Akram, M.S., et al.: Intuitionistic Fuzzy Logic Control for Washing Machines. Indian Journal of Science and Technology 7(5), 654–661 (2014)

    Google Scholar 

  15. Castillo, O., et al.: An Intuitionistic Fuzzy System for Time Series Analysis in Plant Monitoring and Diagnosis. Applied Soft Computing 7(4), 1227–1233 (2007)

    Article  Google Scholar 

  16. Hájek, P.: Credit Rating Analysis using Adaptive Fuzzy Rule-Based Systems: An Industry Specific Approach. Central European Journal of Operations Research 20(3), 421–434 (2012)

    Article  MATH  Google Scholar 

  17. Hájek, P., Olej, V.: Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013, Part II. CCIS, vol. 384, pp. 1–10. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Atanassov, K.T.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61(2), 137–142 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties. Fuzzy Sets and Systems 143, 5–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barrenechea, E.: Generalized atanassov’s intuitionistic fuzzy index. Construction Method. In: IFSA-EUSFLAT, Lisbon, pp. 478–482 (2009)

    Google Scholar 

  22. Deschrijver, G., Cornelis, C., Kerre, E.: On the Representation of Intuitionistic Fuzzy t-norm and t-conorm. IEEE Transactions on Fuzzy Systems 12, 45–61 (2004)

    Article  Google Scholar 

  23. Angelov, P.: Crispification: Defuzzification over Intuitionistic Fuzzy Sets. BUSEFAL 64, 51–55 (1995)

    Google Scholar 

  24. Angelov, P.: Multi-Objective Optimisation in Air-Conditioning Systems: Comfort/Discomfort Definition by IF Sets. Notes on Intuitionistic Fuzzy Sets 7(1), 10–23 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Chiu, S.: Fuzzy Model Identification based on Cluster Estimation. Journal of Intelligence and Fuzzy Systems 2, 267–278 (1994)

    Google Scholar 

  26. Loughran, T., McDonald, B.: When is a Liability not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance 66(1), 35–65 (2011)

    Article  Google Scholar 

  27. Hall, M.A.: Correlation-based Feature Selection for Machine Learning. Doctoral dissertation, The University of Waikato (1999)

    Google Scholar 

  28. Bernardo, D., Hagras, H., Tsang, E.: A Genetic Type-2 Fuzzy Logic based System for the Generation of Summarised Linguistic Predictive Models for Financial Applications. Soft Computing 17(12), 2185–2201 (2013)

    Article  Google Scholar 

  29. Huarng, K., Yu, H.K.: A Type-2 Fuzzy Time Series Model for Stock Index Forecasting. Statistical Mechanics and its Applications 353, 445–462 (2005)

    Article  Google Scholar 

  30. Sotirov, S., Atanassov, K.: Intuitionistic fuzzy feed forward neural network. Cybernetics and Information Technologies 9(2), 71–76 (2009)

    MathSciNet  Google Scholar 

  31. Chen, L.H., Tu, C.C.: Time-validating-based Atanassov’s Intuitionistic Fuzzy Decision-making. IEEE Transactions on Fuzzy Systems. doi:10.1109/TFUZZ.2014.2327989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hájek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hájek, P., Olej, V. (2015). Intuitionistic Fuzzy Neural Network: The Case of Credit Scoring Using Text Information. In: Iliadis, L., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2015. Communications in Computer and Information Science, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-23983-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23983-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23981-1

  • Online ISBN: 978-3-319-23983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics