Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ant Metaheuristic with Adapted Personalities for the Vehicle Routing Problem

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9335))

Included in the following conference series:

  • 4216 Accesses

Abstract

At each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (short term profit or heuristic information) and the trail system (central memory which collects information during the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed. It relies on the use of ants with different personalities. Such a method has been adapted to the well-known vehicle routing problem, and even if it does not match the best known results, its performance is encouraging (on one benchmark instance, new best results have however been found), which opens the door to a new ant algorithm paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bin, Y., Zhong-Zhen, Y., Baozhen, Y.: An improved ant colony optimization for vehicle routing problem. European Journal of Operational Research 196, 171–176 (2009)

    Article  MATH  Google Scholar 

  2. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans Syst Man Cybernet Part B 34(2), 1161–1172 (2004)

    Article  Google Scholar 

  3. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank-based version of the Ant System: A computational study. Central European Journal for Operations Research and Economics 7(1), 25–38 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved Ant System algorithm for the Vehicle Routing Problem. Annals of Operations Research 89, 319–328 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Combinatorial Optimization, pp. 315–338 (1979)

    Google Scholar 

  6. Clarke, G., Wright, J.R.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12(4), 568–581 (1964)

    Article  Google Scholar 

  7. Cordeau, J.-F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.-S.: New heuristics for the vehicle routing problem. In: Logistics Systems: Design and Optimization, pp. 270–297. Springer (2005)

    Google Scholar 

  8. Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., Semet, F.: A Guide to Vehicle Routing Heuristics. Journal of the Operational Research Society 53(5), 512–522 (2002)

    Article  MATH  Google Scholar 

  9. Cordeau, J.-F., Laporte, G.: Tabu search heuristics for the vehicle routing problem. In: Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search, pp. 145–163. Kluwer, Boston (2004)

    Google Scholar 

  10. Cordeau, J.-F., Laporte, G., Mercier, A.: A Unified Tabu Search Heuristic for Vehicle Routing Problems with Time Windows. Journal of the Operational Research Society 52, 928–936 (2001)

    Article  MATH  Google Scholar 

  11. Dorigo, M., Birattari, M., Stuetzle, T.: Ant colony optimization - artificial ants as a computational intelligence technique. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    Article  Google Scholar 

  12. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  13. Dorigo, M., Stuetzle. T.: The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, vol. 57, pp. 251–285 (2003)

    Google Scholar 

  14. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In: New Ideas in Optimization, pp. 63–76. McGraw-Hill, London (1999)

    Google Scholar 

  15. Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the VRP. In: The Vehicle Routing Problem, pp. 129–154. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)

    Google Scholar 

  16. Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer (2010)

    Google Scholar 

  17. Golden, B.L., Wasil E.A., Kelly, J.P., Chao, I.-M.: Metaheuristics in vehicle routing. In: Fleet Management and Logistics, pp. 33–56. Kluwer, Boston (1998)

    Google Scholar 

  18. Hertz, A., Schindl, D., Zufferey, N.: A solution method for a car fleet management problem with maintenance constraints. Journal of Heuristics 15(5), 425–450 (2009)

    Article  MATH  Google Scholar 

  19. Laporte, G., Semet, F.: Classical heuristics for the capacitated VRP. In: The Vehicle Routing Problem, pp. 109–128. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)

    Google Scholar 

  20. Lin, S.: Computer solutions of the traveling salesman problem. Bell System Technical Journal 44, 2245–2269 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luyet, L., Varone, S., Zufferey, N.: An ant algorithm for the steiner tree problem in graphs. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 42–51. Springer, Heidelberg (2007)

    Google Scholar 

  22. Mester, D., Braysy, O.: Active-guided evolution strategies for large-scale capacitated vehicle routing problems. Computers & Operations Research 34(10), 2964–2975 (2007)

    Article  MATH  Google Scholar 

  23. Nagata, Y., Braysy, O.: Edge assembly-based memetic algorithm for the capacitated vehicle routing problem. Networks 54(4), 205–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. PhD thesis, Nortwester University, USA (1976)

    Google Scholar 

  25. Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adaptation to graph colouring. Journal of the Operational Research Society 61, 819–826 (2010)

    Article  MATH  Google Scholar 

  26. Reimann, M., Doerner, K.F., Hartl, R.F.: Analyzing a unified ant system for the VRP and some of its variants. In: Cagnoni, S. (ed.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 300–310. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Reimann, M., Doerner, K., Hartl, R.F.: D-Ants: Savings Based Ants Divide and Conquer the Vehicle Routing Problem. Computers & Operations Research 31(4), 563–591 (2004)

    Article  MATH  Google Scholar 

  28. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics 1, 147–167 (1995)

    Article  MATH  Google Scholar 

  29. Stuetzle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems 16(9), 889–914 (2000)

    Article  Google Scholar 

  30. Toth, P., Vigo, D.: The Granular Tabu Search and Its Application to the Vehicle-Routing Problem. INFORMS Journal on Computing 15(4), 333–346 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attribute vehicle routing problems. European Journal of Operational Research 234, 658–673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zufferey, N.: Heuristiques pour les Problèmes de la Coloration des Sommets d’un Graphe et d’Affectation de Fréquences avec Polarités. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland (2002)

    Google Scholar 

  33. Zufferey, N.: Metaheuristics: some Principles for an Efficient Design. Computer Technology and Applications 3(6), 446–462 (2012)

    Google Scholar 

  34. Zufferey, N.: Optimization by ant algorithms: Possible roles for an individual ant. Optimization Letters 6(5), 963–973 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zufferey, N.: Design and classification of ant metaheuristics. In: Proceedings of the 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp. 339–343 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Farres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zufferey, N., Farres, J., Glardon, R. (2015). Ant Metaheuristic with Adapted Personalities for the Vehicle Routing Problem. In: Corman, F., Voß, S., Negenborn, R. (eds) Computational Logistics. ICCL 2015. Lecture Notes in Computer Science(), vol 9335. Springer, Cham. https://doi.org/10.1007/978-3-319-24264-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24264-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24263-7

  • Online ISBN: 978-3-319-24264-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics