Abstract
We propose a kernel-based online semi-supervised algorithm that is applicable for large scale learning tasks. In particular, we use a multi-view learning framework and a co-agreement strategy to take into account unlabelled data and to improve classification performance of the algorithm. Unlike the standard online methods our algorithm is naturally applicable to many real-world situations where data is available in multiple representations. In addition our online algorithm allows learning non-linear relations in the data via kernel functions, that are efficiently embedded into the formulation of the algorithm. We test performance of the algorithm on several large-scale LIBSVM and UCI benchmark datasets and demonstrate improved performance in comparison to standard online learning methods. Last but not least, we make a Python implementation of our algorithm available for download (Available at https://github.com/laurensvdwiel/KeCo).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at https://github.com/laurensvdwiel/KeCo.
References
Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, pp. 92–100. ACM, New York (1998)
Kumar, A., Saha, A., Daume, H.: Co-regularization based semi-supervised domain adaptation. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 478–486. Curran Associates Inc., UK (2010)
Sindhwani, V., Niyogi, P., Belkin, M.: A co-regularization approach to semi-supervised learning with multiple views. In: Proceedings of ICML Workshop on Learning with Multiple Views (2005)
Goldberg, A.B., Li, M., Zhu, X.: Online manifold regularization: a new learning setting and empirical study. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 393–407. Springer, Heidelberg (2008)
Brefeld, U., Gärtner, T., Scheffer, T., Wrobel, S.: Efficient co-regularised least squares regression. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 137–144. ACM, New York (2006)
Brefeld, U., Scheffer, T.: Co-EM support vector learning. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004, p. 16. ACM, New York (2004)
Rosenberg, D., Bartlett, P.L.: The rademacher complexity of co-regularized kernel classes. In: Meila, M., Shen, X. (eds.) Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, pp. 396–403 (2007)
Sindhwani, V., Rosenberg, D.S.: An RKHS for multi-view learning and manifold co-regularization. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 976–983. ACM, New York (2008)
de Ruijter, T., Tsivtsivadze, E., Heskes, T.: Online co-regularized algorithms. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS, vol. 7569, pp. 184–193. Springer, Heidelberg (2012)
Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-GrAdient SOlver for SVM. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 807–814. ACM, New York (2007)
Sculley, D.: Large scale learning to rank. In: NIPS Workshop on Advances in Ranking, pp. 1–6 (2009)
Tacchetti, A., Mallapragada, P., Santoro, M., Rosasco, L.: GURLS: a toolbox for large scale multiclass learning. In: NIPS 2011 workshop on parallel and large-scale machine learning. http://lcsl.mit.edu/#/downloads/gurls
Fürnkranz, J., Hüllermeier, E.: Preference learning and ranking by pairwise comparison. Prefer. Learn. 1, 65–82 (2010)
Dasgupta, S., Littman, M.L., McAllester, D.: PAC generalization bounds for co-training. Adv. Neural Inform. Proc. Syst. 1, 375–382 (2002)
Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. Adv. Neural Inform. Proc. Syst. 16(16), 313–320 (2004)
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/\({\sim }\)cjlin/libsvm
Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Bottou, L., Bordes, A., Ertekin, S.: LASVM (2009). http://mloss.org/software/view/23/
Acknowledgments
This research was financially supported by Top Institute Food and Nutrition, Wageningen, The Netherlands (Project RE-002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wiel, L., Heskes, T., Levin, E. (2015). KeCo: Kernel-Based Online Co-agreement Algorithm. In: Japkowicz, N., Matwin, S. (eds) Discovery Science. DS 2015. Lecture Notes in Computer Science(), vol 9356. Springer, Cham. https://doi.org/10.1007/978-3-319-24282-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-24282-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24281-1
Online ISBN: 978-3-319-24282-8
eBook Packages: Computer ScienceComputer Science (R0)