Abstract
The popularity of mobile devices has fostered the emergence of plenty of new services, most of which rely on the use of their cameras. Among these, diet monitoring based on computer vision can be of particular interest. However, estimation of the amount of food portrayed in an image requires a size reference. A small checkerboard is a simple pattern which can be effectively used to that end. Unfortunately, most existing off-the-shelf checkerboard detection algorithms have problems detecting small patterns since they are used in tasks such as camera calibration, which require that the pattern cover most of the image area. This work presents a stochastic model-based approach, which relies on Differential Evolution (DE), to detecting small checkerboards. In the method we propose the checkerboard pattern is first roughly located within the image using DE. Then, the region detected in the first step is cropped in order to meet the requirements of off-the-shelf algorithms for checkerboard detection and let them work at their best. Experimental results show that, doing so, it is possible to achieve not only a significant increase of detection accuracy but also a relevant reduction of processing time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almaghrabi, R., Villalobos, G., Pouladzadeh, P., Shirmohammadi, S.: A novel method for measuring nutrition intake based on food image. In: 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 366–370, May 2012
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)
Kitamura, K., Yamasaki, T., Aizawa, K.: Foodlog: capture, analysis and retrieval of personal food images via web. In: Proceedings of the ACM Multimedia 2009 Workshop on Multimedia for Cooking and Eating Activities, pp. 23–30. ACM (2009)
Kong, F., Tan, J.: Dietcam: Automatic dietary assessment with mobile camera phones. Pervasive and Mobile Computing 8(1), 147–163 (2012)
Martin, C.K., Kaya, S., Gunturk, B.K.: Quantification of food intake using food image analysis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6869–6872. IEEE (2009)
Nashed, Y.S., Ugolotti, R., Mesejo, P., Cagnoni, S.: Libcudaoptimize: an open source library of GPU-based metaheuristics. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 117–124. ACM (2012)
Pouladzadeh, P., Villalobos, G., Almaghrabi, R., Shirmohammadi, S.: A novel SVM based food recognition method for calorie measurement applications. In: ICME Workshops, pp. 495–498 (2012)
Puri, M., Zhu, Z., Yu, Q., Divakaran, A., Sawhney, H.: Recognition and volume estimation of food intake using a mobile device. In: 2009 Workshop on Applications of Computer Vision (WACV), pp. 1–8. IEEE (2009)
Rahman, M.H., Li, Q., Pickering, M., Frater, M., Kerr, D., Bouchey, C., Delp, E.: Food volume estimation in a mobile phone based dietary assessment system. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 988–995. IEEE (2012)
Rahmana, M.H., Pickering, M.R., Kerr, D., Boushey, C.J., Delp, E.J.: A new texture feature for improved food recognition accuracy in a mobile phone based dietary assessment system. In: 2012 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 418–423. IEEE (2012)
Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on blurred and distorted images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3121–3126. IEEE (2008)
Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)
Sun, W., Yang, X., Xiao, S., Hu, W.: Robust checkerboard recognition for efficient nonplanar geometry registration in projector-camera systems. In: Proceedings of the 5th ACM/IEEE International Workshop on Projector camera systems, p. 2. ACM (2008)
Ugolotti, R., Nashed, Y.S.G., Cagnoni, S.: Real-time GPU based road sign detection and classification. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 153–162. Springer, Heidelberg (2012)
Ugolotti, R., Nashed, Y.S., Mesejo, P., Ivekovič, Š., Mussi, L., Cagnoni, S.: Particle swarm optimization and differential evolution for model-based object detection. Applied Soft Computing 13(6), 3092–3105 (2013)
Weiss, R., Stumbo, P.J., Divakaran, A.: Automatic food documentation and volume computation using digital imaging and electronic transmission. Journal of the American Dietetic Association 110(1), 42–44 (2010)
Zhu, F., Bosch, M., Woo, I., Kim, S., Boushey, C.J., Ebert, D.S., Delp, E.J.: The use of mobile devices in aiding dietary assessment and evaluation. IEEE Journal of Selected Topics in Signal Processing 4(4), 756–766 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hassannejad, H., Matrella, G., Mordonini, M., Cagnoni, S. (2015). Using Stochastic Optimization to Improve the Detection of Small Checkerboards. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds) AI*IA 2015 Advances in Artificial Intelligence. AI*IA 2015. Lecture Notes in Computer Science(), vol 9336. Springer, Cham. https://doi.org/10.1007/978-3-319-24309-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-24309-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24308-5
Online ISBN: 978-3-319-24309-2
eBook Packages: Computer ScienceComputer Science (R0)