Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Permutational Rademacher Complexity

A New Complexity Measure for Transductive Learning

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9355))

Included in the following conference series:

  • 1374 Accesses

Abstract

Transductive learning considers situations when a learner observes m labelled training points and u unlabelled test points with the final goal of giving correct answers for the test points. This paper introduces a new complexity measure for transductive learning called Permutational Rademacher Complexity (PRC) and studies its properties. A novel symmetrization inequality is proved, which shows that PRC provides a tighter control over expected suprema of empirical processes compared to what happens in the standard i.i.d. setting. A number of comparison results are also provided, which show the relation between PRC and other popular complexity measures used in statistical learning theory, including Rademacher complexity and Transductive Rademacher Complexity (TRC). We argue that PRC is a more suitable complexity measure for transductive learning. Finally, these results are combined with a standard concentration argument to provide novel data-dependent risk bounds for transductive learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartlett, P., Bousquet, O., Mendelson, S.: Local rademacher complexities. The Annals of Statistics 33(4), 1497–1537 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research 3, 463–482 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Blum, A., Langford, J.: PAC-MDL bounds. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 344–357. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Boucheron, S., Lugosi, G., Bousquet, O.: Theory of classification: a survey of recent advances. ESAIM: Probability and Statistics 9, 323–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press (2013)

    Google Scholar 

  6. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press (2006)

    Google Scholar 

  7. Cortes, C., Mohri, M.: On transductive regression. In: NIPS 2006, pp. 305–312 (2007)

    Google Scholar 

  8. Cortes, C., Mohri, M., Pechyony, D., Rastogi, A.: Stability analysis and learning bounds for transductive regression algorithms (2009). CoRR abs/0904.0814

  9. Derbeko, P., El-Yaniv, R., Meir, R.: Explicit learning curves for transduction and application to clustering and compression algorithms. Journal of Artificial Intelligence Research 22(1), 117–142 (2004)

    MathSciNet  MATH  Google Scholar 

  10. El-Yaniv, R., Pechyony, D.: Transductive rademacher complexity and its applications. Journal of Artificial Intelligence Research 35(1), 193–234 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Gross, D., Nesme, V.: Note on sampling without replacing from a finite collection of matrices (2010). http://arxiv.org/abs/1001.2738v2

  12. Haagerup, U.: The best constants in Khinchine inequality. Studia Mathematica 70(3), 231–283 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Koltchinskii, V.: Oracle inequalities in empirical risk minimization and sparse recovery problems. Springer (2011)

    Google Scholar 

  14. Koltchinskii, V., Panchenko, D.: Rademacher processes and bounding the risk of function learning. In: Gine. D.E., Wellner, J. (eds.) High Dimensional Probability, II, pp. 443–457. Birkhauser (1999)

    Google Scholar 

  15. Ledoux, M., Talagrand, M.: Probability in Banach Space. Springer-Verlag (1991)

    Google Scholar 

  16. Magdon-Ismail, M.: Permutation complexity bound on out-sample error. In: Advances in Neural Information Processing Systems (NIPS 2010), pp. 1531–1539 (2010)

    Google Scholar 

  17. Mendelson, S.: Learning without Concentration (2014). CoRR abs/1401.0304

  18. Pechyony, D.: Theory and Practice of Transductive Learning. PhD thesis (2008)

    Google Scholar 

  19. Stanica, P.: Good lower and upper bounds on binomial coefficients. Journal of Inequalities in Pure and Applied Mathematics 2(3) (2001)

    Google Scholar 

  20. Tolstikhin, I., Blanchard, G., Kloft, M.: Localized complexities for transductive learning. In: COLT 2014, pp. 857–884 (2014)

    Google Scholar 

  21. Van der Vaart, A.W., Wellner, J.: Weak Convergence and Empirical Processes: With Applications to Statistics. Springer (2000)

    Google Scholar 

  22. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Tolstikhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tolstikhin, I., Zhivotovskiy, N., Blanchard, G. (2015). Permutational Rademacher Complexity. In: Chaudhuri, K., GENTILE, C., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2015. Lecture Notes in Computer Science(), vol 9355. Springer, Cham. https://doi.org/10.1007/978-3-319-24486-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24486-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24485-3

  • Online ISBN: 978-3-319-24486-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics