Abstract
Finding correspondence between non-rigid shapes is at the heart of three-dimensional shape processing. It has been extensively addressed over the last decade, but efficient and accurate correspondence detection still remains a challenging task. Generalized Multidimensional Scaling (GMDS) is an approach that finds correspondence by mapping one shape into another, while attempting to preserve distances between pairs of corresponding points on the two shapes. A different approach consists in detecting correspondence between shapes by matching their pointwise surface descriptors. Recently, the Spectral GMDS (SGMDS) approach was introduced, according to which the GMDS was re-formulated in the natural spectral domain of the shapes. Here, we propose a method that combines matching based on geodesic distances and pointwise surface descriptors . Following SGMDS, in the proposed solution the entire problem is translated into the spectral domain, resulting in efficient correspondence computation. Efficiency and accuracy of the proposed method are demonstrated by comparing it to state-of-the-art approaches, using a standard correspondence benchmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aflalo, Y., Dubrovina, A., Kimmel, R.: Spectral generalized multi-dimensional scaling. Int. J. Comput. Vis. 29, 1–13 (2016)
Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc. Natl. Acad. Sci. 110 (45), 18052–18057 (2013)
Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: ACM Transactions on Graphics (TOG), vol. 27, pp. 85. ACM (2008)
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. In: Proceedings of ACM Transactions on Graphics (SIGGRAPH), Los Angeles, vol. 24, pp. 408–416 (2005)
Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. Adv. Neural Inf. Process. Syst. 17, 33–40 (2004)
Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3d shape segmentation based on a quantum mechanical feature descriptor. In: Pattern Recognition, pp. 122–131. Springer (2011)
Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, pp. 1626–1633. IEEE (2011)
Ben-Tal, A., Zibulevsky, M.: Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7 (2), 347–366 (1997)
Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4 (4), 373–398 (1994)
Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)
Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (1997)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28 (5), 1812–1836 (2006)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA 103 (5), 1168–1172 (2006)
Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV 89 (2–3), 266–286 (2010)
Bronstein, M., Bronstein, A.M.: Shape recognition with spectral distances with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33 (5), 1065–1071 (2011)
Burago, D., Burago, Y., Ivanov S.: A Course in Metric Geometry, vol. 33. American Mathematical Society Providence, Providence (2001)
Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, pp. 2724–2729. IEEE (1991)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21 (1), 5–30 (2006). Special Issue: Diffusion Maps and Wavelets
Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, vol. 1, pp. 553–560. IEEE (2006)
Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the laplace_belrami operator. In: Proceedings of the Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Paris (2010)
Dubrovina, A., Kimmel, R.: Approximately isometric shape correspondence by matching pointwise spectral features and global geodesic structures. Adv. Adapt. Data Anal. 3 (1–2), 203–228 (2011)
Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. Trans. Pattern Anal. Mach. Intell. (PAMI) 25 (10), 1285–1295 (2003)
Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Computer Graphics Forum, vol. 28, pp. 1405–1413. Wiley Online Library (2009)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)
Gromov, M.: Structures metriques pour les varietes riemanniennes. Textes Mathematiques, vol. 1. CEDIC/Fernand Nathan, Paris (1981)
Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10 (2), 180–184 (1985)
Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25 (5–7), 667–675 (2009)
Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. In: ACM Transactions on Graphics (TOG), vol. 30, p. 125. ACM (2011)
Johnson, A.: Spin-images: a representation for 3-D surface matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh (1997)
Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York (2000)
Kim, T.H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35 (7), 1690–1703 (2013)
Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM SIGGRAPH 2011 papers (SIGGRAPH ’11), New York, pp. 79:1–79:12. ACM (2011)
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. (PNAS) 95 (15), 8431–8435 (1998)
Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic basis. Comput. Graph. Forum (EUROGRAPHICS) 32, 439–448 (2013)
Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications (SMI 2006), Washington, DC, pp. 13–13. IEEE (2006)
Lipman, Y., Daubechies, I.: Conformal Wasserstein Distances: Comparing Surfaces in Polynomial Time Yaron Lipman, Ingrid Daubechies. Adv. Math. 227 (3) (2011)
Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Trans. Graph. (Proc. SIGGRAPH) 28 (3), 72 (2009)
Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, pp. 1–8. IEEE (2008)
Mellado, N., Aiger, D., Mitra, N.J.: Super 4 pcs fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33, pp. 205–215. Wiley Online Library (2014)
Memoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M. (eds.) Symposium on Point Based Graphics, Prague. Eurographics Association, pp. 81–90
Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5 (3), 313–347 (2005)
Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III, 35–57 (2003)
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31 (4), 30:1–30:11 (2012)
Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. In: Eurographics Symposium on Geometry Processing (SGP), Lyon (2010)
Ovsjanikov, M., Mérigot, Q., Pătrăucean, V., Guibas, L.: Shape matching via quotient spaces. In: Computer Graphics Forum, vol. 32, pp. 1–11. Wiley Online Library (2013)
Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. In: Computer Graphics Forum, vol. 27, pp. 1341–1348 (2008)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2 (1), 15–36 (1993)
Pokrass, J., Bronstein, A.M., Bronstein M.M.: A correspondence-less approach to matching of deformable shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 592–603. Springer, Berlin/New York (2012)
Pokrass, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G.: Sparse modeling of intrinsic correspondences. Comput. Graph. Forum (EUROGRAPHICS) 32, 459–268 (2013)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. (IJCV) (2009)
Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical shape matching. In: Proceedings of the Scale Space and Variational Methods (SSVM), Ein-Gedi (2011)
Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 604–615. Springer, Berlin (2012)
Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “shape-DNA” of surfaces and solids. Comput. Aided Design 38, 342–366 (2006)
Rodola, E., Bulo, S.R., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape correspondence using random forests. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus (2014)
Rustamov, R., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. In: SIGGRAPH, Hong Kong. ACM (2013)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Symposium on Geometry Processing (SGP), Barcelona, pp. 225–233 (2007)
Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1461–1470. Wiley Online Library (2011)
Shami, G., Aflalo, Y., Zibulevsky, M., Kimmel, R.: Classical scaling revisited. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp. 2255–2263 (2015)
Shtern, A., Kimmel, R.: Iterative closest spectral kernel maps. In: International Conference on 3D Vision (3DV), Tokyo (2014)
Shtern, A., Kimmel, R.: Matching the LBO eigenspace of non-rigid shapes via high order statistics. Axioms 3 (3), 300–319 (2014)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing (SGP ’09), Aire-la-Ville, pp. 1383–1392. Eurographics Association (2009)
Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.-P.: Isometric registration of ambiguous and partial data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami Beach, pp. 1185–1192. IEEE Computer Society (2009)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, pp. 373–380. IEEE (2009)
Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, pp. 382–389. IEEE (2010)
Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum (Proc. SGP) 27 (5), 1431–1439 (2008)
Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Vis. Comput. Graph. 8 (2), 198–207 (2002)
Acknowledgements
We thank Alon Shtern for fruitful discussions. This research was supported by European Community’s FP7- ERC program, grant agreement no. 267414.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Dubrovina, A., Aflalo, Y., Kimmel, R. (2016). Non-rigid Shape Correspondence Using Surface Descriptors and Metric Structures in the Spectral Domain. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-24726-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24724-3
Online ISBN: 978-3-319-24726-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)