Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-rigid Shape Correspondence Using Surface Descriptors and Metric Structures in the Spectral Domain

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1533 Accesses

Abstract

Finding correspondence between non-rigid shapes is at the heart of three-dimensional shape processing. It has been extensively addressed over the last decade, but efficient and accurate correspondence detection still remains a challenging task. Generalized Multidimensional Scaling (GMDS) is an approach that finds correspondence by mapping one shape into another, while attempting to preserve distances between pairs of corresponding points on the two shapes. A different approach consists in detecting correspondence between shapes by matching their pointwise surface descriptors. Recently, the Spectral GMDS (SGMDS) approach was introduced, according to which the GMDS was re-formulated in the natural spectral domain of the shapes. Here, we propose a method that combines matching based on geodesic distances and pointwise surface descriptors . Following SGMDS, in the proposed solution the entire problem is translated into the spectral domain, resulting in efficient correspondence computation. Efficiency and accuracy of the proposed method are demonstrated by comparing it to state-of-the-art approaches, using a standard correspondence benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aflalo, Y., Dubrovina, A., Kimmel, R.: Spectral generalized multi-dimensional scaling. Int. J. Comput. Vis. 29, 1–13 (2016)

    MathSciNet  Google Scholar 

  2. Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc. Natl. Acad. Sci. 110 (45), 18052–18057 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: ACM Transactions on Graphics (TOG), vol. 27, pp. 85. ACM (2008)

    Google Scholar 

  4. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. In: Proceedings of ACM Transactions on Graphics (SIGGRAPH), Los Angeles, vol. 24, pp. 408–416 (2005)

    Google Scholar 

  5. Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. Adv. Neural Inf. Process. Syst. 17, 33–40 (2004)

    Google Scholar 

  6. Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3d shape segmentation based on a quantum mechanical feature descriptor. In: Pattern Recognition, pp. 122–131. Springer (2011)

    Google Scholar 

  7. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, pp. 1626–1633. IEEE (2011)

    Google Scholar 

  8. Ben-Tal, A., Zibulevsky, M.: Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7 (2), 347–366 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4 (4), 373–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  11. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (1997)

    Book  MATH  Google Scholar 

  12. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008)

    MATH  Google Scholar 

  13. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28 (5), 1812–1836 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA 103 (5), 1168–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV 89 (2–3), 266–286 (2010)

    Article  Google Scholar 

  16. Bronstein, M., Bronstein, A.M.: Shape recognition with spectral distances with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33 (5), 1065–1071 (2011)

    Google Scholar 

  17. Burago, D., Burago, Y., Ivanov S.: A Course in Metric Geometry, vol. 33. American Mathematical Society Providence, Providence (2001)

    MATH  Google Scholar 

  18. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, pp. 2724–2729. IEEE (1991)

    Google Scholar 

  19. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21 (1), 5–30 (2006). Special Issue: Diffusion Maps and Wavelets

    Google Scholar 

  20. Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, vol. 1, pp. 553–560. IEEE (2006)

    Google Scholar 

  21. Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the laplace_belrami operator. In: Proceedings of the Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Paris (2010)

    Google Scholar 

  22. Dubrovina, A., Kimmel, R.: Approximately isometric shape correspondence by matching pointwise spectral features and global geodesic structures. Adv. Adapt. Data Anal. 3 (1–2), 203–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. Trans. Pattern Anal. Mach. Intell. (PAMI) 25 (10), 1285–1295 (2003)

    Google Scholar 

  24. Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Computer Graphics Forum, vol. 28, pp. 1405–1413. Wiley Online Library (2009)

    Google Scholar 

  25. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gromov, M.: Structures metriques pour les varietes riemanniennes. Textes Mathematiques, vol. 1. CEDIC/Fernand Nathan, Paris (1981)

    Google Scholar 

  27. Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10 (2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25 (5–7), 667–675 (2009)

    Article  Google Scholar 

  29. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. In: ACM Transactions on Graphics (TOG), vol. 30, p. 125. ACM (2011)

    Google Scholar 

  30. Johnson, A.: Spin-images: a representation for 3-D surface matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh (1997)

    Google Scholar 

  31. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York (2000)

    Google Scholar 

  32. Kim, T.H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35 (7), 1690–1703 (2013)

    Article  Google Scholar 

  33. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM SIGGRAPH 2011 papers (SIGGRAPH ’11), New York, pp. 79:1–79:12. ACM (2011)

    Google Scholar 

  34. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. (PNAS) 95 (15), 8431–8435 (1998)

    Google Scholar 

  35. Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic basis. Comput. Graph. Forum (EUROGRAPHICS) 32, 439–448 (2013)

    Article  Google Scholar 

  36. Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications (SMI 2006), Washington, DC, pp. 13–13. IEEE (2006)

    Google Scholar 

  37. Lipman, Y., Daubechies, I.: Conformal Wasserstein Distances: Comparing Surfaces in Polynomial Time Yaron Lipman, Ingrid Daubechies. Adv. Math. 227 (3) (2011)

    Google Scholar 

  38. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Trans. Graph. (Proc. SIGGRAPH) 28 (3), 72 (2009)

    Google Scholar 

  39. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, pp. 1–8. IEEE (2008)

    Google Scholar 

  40. Mellado, N., Aiger, D., Mitra, N.J.: Super 4 pcs fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33, pp. 205–215. Wiley Online Library (2014)

    Google Scholar 

  41. Memoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M. (eds.) Symposium on Point Based Graphics, Prague. Eurographics Association, pp. 81–90

    Google Scholar 

  42. Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5 (3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III, 35–57 (2003)

    Google Scholar 

  44. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31 (4), 30:1–30:11 (2012)

    Google Scholar 

  45. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. In: Eurographics Symposium on Geometry Processing (SGP), Lyon (2010)

    Google Scholar 

  46. Ovsjanikov, M., Mérigot, Q., Pătrăucean, V., Guibas, L.: Shape matching via quotient spaces. In: Computer Graphics Forum, vol. 32, pp. 1–11. Wiley Online Library (2013)

    Google Scholar 

  47. Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. In: Computer Graphics Forum, vol. 27, pp. 1341–1348 (2008)

    Google Scholar 

  48. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2 (1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pokrass, J., Bronstein, A.M., Bronstein M.M.: A correspondence-less approach to matching of deformable shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 592–603. Springer, Berlin/New York (2012)

    Google Scholar 

  50. Pokrass, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G.: Sparse modeling of intrinsic correspondences. Comput. Graph. Forum (EUROGRAPHICS) 32, 459–268 (2013)

    Article  Google Scholar 

  51. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. (IJCV) (2009)

    Google Scholar 

  52. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical shape matching. In: Proceedings of the Scale Space and Variational Methods (SSVM), Ein-Gedi (2011)

    Google Scholar 

  53. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 604–615. Springer, Berlin (2012)

    Google Scholar 

  54. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “shape-DNA” of surfaces and solids. Comput. Aided Design 38, 342–366 (2006)

    Article  Google Scholar 

  55. Rodola, E., Bulo, S.R., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape correspondence using random forests. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus (2014)

    Google Scholar 

  56. Rustamov, R., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. In: SIGGRAPH, Hong Kong. ACM (2013)

    MATH  Google Scholar 

  57. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Symposium on Geometry Processing (SGP), Barcelona, pp. 225–233 (2007)

    Google Scholar 

  58. Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1461–1470. Wiley Online Library (2011)

    Google Scholar 

  59. Shami, G., Aflalo, Y., Zibulevsky, M., Kimmel, R.: Classical scaling revisited. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp. 2255–2263 (2015)

    Google Scholar 

  60. Shtern, A., Kimmel, R.: Iterative closest spectral kernel maps. In: International Conference on 3D Vision (3DV), Tokyo (2014)

    Google Scholar 

  61. Shtern, A., Kimmel, R.: Matching the LBO eigenspace of non-rigid shapes via high order statistics. Axioms 3 (3), 300–319 (2014)

    Article  MATH  Google Scholar 

  62. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing (SGP ’09), Aire-la-Ville, pp. 1383–1392. Eurographics Association (2009)

    Google Scholar 

  63. Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.-P.: Isometric registration of ambiguous and partial data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami Beach, pp. 1185–1192. IEEE Computer Society (2009)

    Google Scholar 

  64. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, pp. 373–380. IEEE (2009)

    Google Scholar 

  65. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, pp. 382–389. IEEE (2010)

    Google Scholar 

  66. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum (Proc. SGP) 27 (5), 1431–1439 (2008)

    Google Scholar 

  67. Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Vis. Comput. Graph. 8 (2), 198–207 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alon Shtern for fruitful discussions. This research was supported by European Community’s FP7- ERC program, grant agreement no. 267414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Dubrovina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dubrovina, A., Aflalo, Y., Kimmel, R. (2016). Non-rigid Shape Correspondence Using Surface Descriptors and Metric Structures in the Spectral Domain. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_13

Download citation

Publish with us

Policies and ethics