Abstract
Multi-agent Reinforcement Learning (MARL) methods offer a promising alternative to traditional analytical approaches for the design of control systems. We review the most important MARL algorithms from a control perspective focusing on on-line and model-free methods. We review some of sophisticated developments in the state-of-the-art of single-agent Reinforcement Learning which may be transferred to MARL, listing the most important remaining challenges. We also propose some ideas for future research aiming to overcome some of these challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arel, I., Liu, C., Urbanik, T., Kohls, A.: Reinforcement learning-based multi-agent system for network traffic signal control. Intell. Transport Syst. IET 4(2), 128–135 (2010)
Arokhlo, M., Selamat, A., Hashim, S., Selamat, M.: Route guidance system using multi-agent reinforcement learning. In: 2011 7th International Conference on Information Technology in Asia (CITA 2011), pp. 1–5, July 2011
Bagnell, J.A.D., Schneider, J.: Autonomous helicopter control using reinforcement learning policy search methods. In: 2001 Proceedings of the International Conference on Robotics and Automation. IEEE, May 2001
Bazzan, A.: Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Auton. Agents Multi-Agent Syst. 18(3), 342–375 (2009)
Bhatnagar, S., Sutton, R., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms. Automatica Int. Fed. Autom. Control 45(11), 2471–2482 (2009)
Boyan, J.A.: Technical update: least-squares temporal difference learning. Mach. Learn. 49, 233–246 (2002)
Bussoniu, L., Babuska, R., Schutter, B.D., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC Press, Boca Raton (2010)
Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 746–752. AAAI Press (1997)
Czibula, G., Bocicor, M.I., Czibula, I.G.: A distributed reinforcement learning approach for solving optimization problems. In: Proceedings of the 5th WSEAS International Conference on Communications and Information Technology, CIT 2011, pp. 25–30. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2011)
De Hauwere, Y.M., Vrancx, P., Nowé, A.: Learning multi-agent state space representations. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, vol. 1, pp. 715–722. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2010)
Dietterich, T.G.: An overview of MAXQ hierarchical reinforcement learning. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, p. 26. Springer, Heidelberg (2000)
Drugan, M., Nowe, A.: Designing multi-objective multi-armed bandits algorithms: a study. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, August 2013
Duro, R., Graña, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Inf. Sci. 180(14), 2635–2648 (2010)
Fernandez-Gauna, B., Lopez-Guede, J., Graña, M.: Transfer learning with partially constrained models: application to reinforcement learning of linked multicomponent robot system control. Robot. Auton. Syst. 61(7), 694–703 (2013)
Fernandez-Gauna, B., Ansoategui, I., Etxeberria-Agiriano, I., Graña, M.: Reinforcement learning of ball screw feed drive controllers. Eng. Appl. Artif. Intell. 30, 107–117 (2014)
Fernandez-Gauna, B., Graña, M., Etxeberria-Agiriano, I.: Distributed round-robin q-learning. PLoS ONE 10(7), e0127129 (2015)
Fernandez-Gauna, B., Marques, I., Graña, M.: Undesired state-action prediction in multi-agent reinforcement learning. application to multicomponent robotic system control. Inf. Sci. 232, 309–324 (2013)
Fernandez-Gauna, B., Osa, J.L., Graña, M.: Effect of initial conditioning of reinforcement learning agents on feedback control tasks over continuous state and action spaces. In: de la Puerta, J.G., Ferreira, I.G., Bringas, P.G., Klett, F., Abraham, A., de Carvalho, A.C.P.L.F., Herrero, Á., Baruque, B., Quintián, H., Corchado, E. (eds.) International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. AISC, vol. 299, pp. 125–133. Springer, Heidelberg (2014)
Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforcement learning. Auton. Agents Multi-Agent Syst. 13, 197–229 (2006)
Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: Proceedings of the IXth ICML, pp. 227–234 (2002)
van Hasselt, H.: Reinforcement Learning in Continuous State and Action Spaces. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State of the Art, pp. 207–246. Springer, Heidelberg (2011)
Hengst, B.: Discovering hierarchy in reinforcement learning with HEXQ. In: Maching Learning: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 243–250. Morgan Kaufmann (2002)
Kapetanakis, S., Kudenko, D.: Reinforcement learning of coordination in cooperative multi-agent systems. In: AAAI/IAAI 2002, pp. 326–331 (2002)
Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff propagation. J. Mach. Learn. Res. 7, 1789–1828 (2006)
Kuyer, L., Whiteson, S., Bakker, B., Vlassis, N.: Multiagent reinforcement learning for urban traffic control using coordination graphs. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 656–671. Springer, Heidelberg (2008)
Lauer, M., Riedmiller, M.A.: An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML 2000, pp. 535–542. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Li, F.D., Wu, M., He, Y., Chen, X.: Optimal control in microgrid using multi-agent reinforcement learning. ISA Trans. 51(6), 743–751 (2012)
Littman, M.L.: Value-function reinforcement learning in Markov games. Cogn. Syst. Res. 2(1), 55–66 (2001)
Mehta, N., Ray, S., Tadepalli, P., Dietterich, T.: Automatic discovery and transfer of MAXQ hierarchies. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 648–655. ACM, New York (2008). http://doi.acm.org/10.1145/1390156.1390238
Melo, F., Ribeiro, M.: Coordinated learning in multiagent MDPS with infinite state-space. Auton. Agents Multi-Agent Syst. 21, 321–367 (2010)
Nedic, A., Bertsekas, D.: Least squares policy evaluation algorithms with linear function approximation. Discrete Event Dyn. Syst. 13(1–2), 79–110 (2003)
Peters, J., Schaal, S.: Policy gradient methods for robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2006)
Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer, London (2007)
Roberts, J.W., Manchester, I.R., Tedrake, R.: Feedback controller parameterizations for reinforcement learning. In: IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (2011)
Salkham, A., Cunningham, R., Garg, A., Cahill, V.: A collaborative reinforcement learning approach to urban traffic control optimization. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2008, vol. 2, pp. 560–566. IEEE Computer Society, Washington, DC (2008)
Servin, A., Kudenko, D.: Multi-agent reinforcement learning for intrusion detection. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D. (eds.) ALAMAS 2005, ALAMAS 2006, and ALAMAS 2007. LNCS (LNAI), vol. 4865, pp. 211–223. Springer, Heidelberg (2008)
Sutton, R.S., Barto, A.G.: Reinforcement Learning I: Introduction. MIT Press, Cambridge (1998)
Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10(1), 1633–1685 (2009)
Vlassis, N., Elhorst, R., Kok, J.R.: Anytime algorithms for multiagent decision making using coordination graphs. In: Proceedings of the International Conference on Systems, Man, and Cybernetics (2004)
Wang, X., Sandholm, T.: Reinforcement learning to play an optimal nash equilibrium in team Markov games. In: Advances in Neural Information Processing Systems, pp. 1571–1578. MIT Press (2002)
Wu, C., Chowdhury, K., Di Felice, M., Meleis, W.: Spectrum management of cognitive radio using multi-agent reinforcement learning. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Industry Track, AAMAS 2010, pp. 1705–1712. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2010)
Xu, X., Zuo, L., Huang, Z.: Reinforcement learning algorithms with function approximation: recent advances and applications. Inf. Sci. 261, 1–31 (2014)
Zhao, G., Sun, R.: Application of multi-agent reinforcement learning to supply chain ordering management. In: 2010 Sixth International Conference on Natural Computation (ICNC), vol. 7, pp. 3830–3834, August 2010
Acknowledgments
This research has been partially funded by grant TIN2011-23823 of the Ministerio de Ciencia e Innovación of the Spanish Government (MINECO), and the Basque Government grant IT874-13 for the research group. Manuel Graña was supported by EC under FP7, Coordination and Support Action, Grant Agreement Number 316097, ENGINE European Research Centre of Network Intelligence for Innovation Enhancement.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Graña, M., Fernandez-Gauna, B. (2015). Multi-agent Reinforcement Learning for Control Systems: Challenges and Proposals. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-24834-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24833-2
Online ISBN: 978-3-319-24834-9
eBook Packages: Computer ScienceComputer Science (R0)