Abstract
This paper presents a facial expression classification system based on a data fusion process using the theory of belief. Such expressions correspond to the six universal emotions (happiness, surprise, disgust, sadness, anger, and fear) as well as the neutral expression. The suggested algorithm rests on the decision fusion of both approaches: the global analysis and the local analysis of facial components. The classification result, throughout these two approaches, will be enhanced by fusion. The performance and the limitations of the recognition system and its ability to deal with different databases are identified through the analysis of a large number of results on the FEEDTUM database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ekman, P.: Facial expression. In: The Handbook of Cognition and Emotion (1999)
Bassili, J.N.: Facial motion in the perception of faces and of emotional expression. Exp. Psychol. Hum. Percept. Perform. 4, 373–379 (1978)
Cohn, J., Zlochower, A., James Lien, J.-J., Kanade, T.: Feature-point tracking by optical flow discriminates subtle differences in facial expression. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 396–401 (1998)
DeCarlo, D., Metaxas, D., Stone, M.: An anthropometric face model using variational techniques. In: Proceedings of the SIGGRAPH, pp. 67–74 (1998)
Wang, M., Iwai, Y., Yachida, M.: Expression recognition from time-sequential facial images by use of expression change model. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 324–329 (1998)
Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36, 259–275 (2003)
Meulders, M., De Boeck, P., Van Mechelen, I.: Probabilistic feature analysis of facial perception of emotions. Appl. Statist. 54, 781–793 (2005)
Ramasso, E., Panagiotakis, C., Rombaut, M., Pellerin, D.: Human action recognition in videos based on the transferable belief model - application to athletics; jumps. Pattern Anal. Appl. J. (2007)
Girondel, V., Caplier, A., Bonnaud, L., Rombaut, M.: Belief theory-based classifiers comparison for static human body postures recognition in video. Int. J. Sig. Process. 2, 29–33 (2005)
Denoeux, T., Smets, Ph.: Classification using belief functions: the relationship between the case-based and model-based approaches. IEEE Trans. Syst. Man Cybern. 36(6), 1395–1406 (2006)
Mercier, D.: Information Fusion for automatic recognition of postal addresses with belief functions theory. University of Technologie of Compiegne, December 2006
Viola, P., Jones, M.: Robust real-time object detection. In: 2nd International Workshop on Statistical and Computational Theories of Vision - Modeling, Learning, Computing, and Sampling Vancouver, Canada (2001)
Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP, vol. 1, pp. 900–903, September 2002
Yuille, A.L., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable templates. Int. J. Comput. Vis. 78, 99–111 (1992)
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)
Lobry, S.: Improving Horn and Schunks Optical flow algorithm. Laboratoire de Recherche et Dveloppement de lEpita (2012)
Yacoob, Y., Davis, L.S.: Recognizing human facial expression from long image sequences using optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 18, 636–642 (1996)
Black, M., Yacoob, Y.: Recognizing facial expressions in image sequences using local parametrized models of image motion. Int. J. Comput. Vis. 25, 23–48 (1997)
Huang, C., Huang, Y.: Facial expression recognition using model-based feature extraction and action parameters classification. J. Vis. Commun. Image Represent. 8, 278–290 (1997)
Chang, C.-C., Lin, C.-J.: Libsvm: library for support vector machines. Department of Computer Science. National Taiwan University, Taipei (2001)
Martin, A.: La fusion dinformations, Polycopie de cours, ENSIETA (2005)
Arif, M.: Fusion de Donnees: Ultime Etape de Reconnaissance de Formes, Applications lIdentication et lAuthentication. Universite de Tours (2005)
Wallhoff, F.: Feedtum: facial expressions and emotion database. Technische Universitat Munchen, Institute for Human-Machine Interaction (2005)
Hammala, Z., Couvreurb, L., Capliera, A., Rombaut, M.: Facial expression classification: an approach based on the fusion of facial deformations using the transferable belief model. Int. J. Approximate Reasoning 46, 542–567 (2007)
Hammal, Z., Couvreur, L., Caplier, A., Rombaut, M.: Facial expression recognition based on the belief theory: comparison with different classifiers. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 743–752. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mhamdi, H., Jarray, H., Bouhlel, M.S. (2015). The Belief Theory for Emotion Recognition. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-24834-9_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24833-2
Online ISBN: 978-3-319-24834-9
eBook Packages: Computer ScienceComputer Science (R0)