Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Belief Theory for Emotion Recognition

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2015 (IDEAL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9375))

  • 1542 Accesses

Abstract

This paper presents a facial expression classification system based on a data fusion process using the theory of belief. Such expressions correspond to the six universal emotions (happiness, surprise, disgust, sadness, anger, and fear) as well as the neutral expression. The suggested algorithm rests on the decision fusion of both approaches: the global analysis and the local analysis of facial components. The classification result, throughout these two approaches, will be enhanced by fusion. The performance and the limitations of the recognition system and its ability to deal with different databases are identified through the analysis of a large number of results on the FEEDTUM database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekman, P.: Facial expression. In: The Handbook of Cognition and Emotion (1999)

    Google Scholar 

  2. Bassili, J.N.: Facial motion in the perception of faces and of emotional expression. Exp. Psychol. Hum. Percept. Perform. 4, 373–379 (1978)

    Article  Google Scholar 

  3. Cohn, J., Zlochower, A., James Lien, J.-J., Kanade, T.: Feature-point tracking by optical flow discriminates subtle differences in facial expression. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 396–401 (1998)

    Google Scholar 

  4. DeCarlo, D., Metaxas, D., Stone, M.: An anthropometric face model using variational techniques. In: Proceedings of the SIGGRAPH, pp. 67–74 (1998)

    Google Scholar 

  5. Wang, M., Iwai, Y., Yachida, M.: Expression recognition from time-sequential facial images by use of expression change model. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 324–329 (1998)

    Google Scholar 

  6. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36, 259–275 (2003)

    Article  MATH  Google Scholar 

  7. Meulders, M., De Boeck, P., Van Mechelen, I.: Probabilistic feature analysis of facial perception of emotions. Appl. Statist. 54, 781–793 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Ramasso, E., Panagiotakis, C., Rombaut, M., Pellerin, D.: Human action recognition in videos based on the transferable belief model - application to athletics; jumps. Pattern Anal. Appl. J. (2007)

    Google Scholar 

  9. Girondel, V., Caplier, A., Bonnaud, L., Rombaut, M.: Belief theory-based classifiers comparison for static human body postures recognition in video. Int. J. Sig. Process. 2, 29–33 (2005)

    Google Scholar 

  10. Denoeux, T., Smets, Ph.: Classification using belief functions: the relationship between the case-based and model-based approaches. IEEE Trans. Syst. Man Cybern. 36(6), 1395–1406 (2006)

    Google Scholar 

  11. Mercier, D.: Information Fusion for automatic recognition of postal addresses with belief functions theory. University of Technologie of Compiegne, December 2006

    Google Scholar 

  12. Viola, P., Jones, M.: Robust real-time object detection. In: 2nd International Workshop on Statistical and Computational Theories of Vision - Modeling, Learning, Computing, and Sampling Vancouver, Canada (2001)

    Google Scholar 

  13. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP, vol. 1, pp. 900–903, September 2002

    Google Scholar 

  14. Yuille, A.L., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable templates. Int. J. Comput. Vis. 78, 99–111 (1992)

    Article  Google Scholar 

  15. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  16. Lobry, S.: Improving Horn and Schunks Optical flow algorithm. Laboratoire de Recherche et Dveloppement de lEpita (2012)

    Google Scholar 

  17. Yacoob, Y., Davis, L.S.: Recognizing human facial expression from long image sequences using optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 18, 636–642 (1996)

    Article  Google Scholar 

  18. Black, M., Yacoob, Y.: Recognizing facial expressions in image sequences using local parametrized models of image motion. Int. J. Comput. Vis. 25, 23–48 (1997)

    Article  Google Scholar 

  19. Huang, C., Huang, Y.: Facial expression recognition using model-based feature extraction and action parameters classification. J. Vis. Commun. Image Represent. 8, 278–290 (1997)

    Article  Google Scholar 

  20. Chang, C.-C., Lin, C.-J.: Libsvm: library for support vector machines. Department of Computer Science. National Taiwan University, Taipei (2001)

    Google Scholar 

  21. Martin, A.: La fusion dinformations, Polycopie de cours, ENSIETA (2005)

    Google Scholar 

  22. Arif, M.: Fusion de Donnees: Ultime Etape de Reconnaissance de Formes, Applications lIdentication et lAuthentication. Universite de Tours (2005)

    Google Scholar 

  23. Wallhoff, F.: Feedtum: facial expressions and emotion database. Technische Universitat Munchen, Institute for Human-Machine Interaction (2005)

    Google Scholar 

  24. Hammala, Z., Couvreurb, L., Capliera, A., Rombaut, M.: Facial expression classification: an approach based on the fusion of facial deformations using the transferable belief model. Int. J. Approximate Reasoning 46, 542–567 (2007)

    Article  Google Scholar 

  25. Hammal, Z., Couvreur, L., Caplier, A., Rombaut, M.: Facial expression recognition based on the belief theory: comparison with different classifiers. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 743–752. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halima Mhamdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mhamdi, H., Jarray, H., Bouhlel, M.S. (2015). The Belief Theory for Emotion Recognition. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24834-9_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24833-2

  • Online ISBN: 978-3-319-24834-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics