Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Probabilistic Programming: A True Verification Challenge

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9364))

  • 1048 Accesses

Abstract

Probabilistic programs [6] are sequential programs, written in languages like C, Java, Scala, or ML, with two added constructs: (1) the ability to draw values at random from probability distributions, and (2) the ability to condition values of variables in a program through observations. For a comprehensive treatment, see [3]. They have a wide range of applications. Probabilistic programming is at the heart of machine learning for describing distribution functions; Bayesian inference is pivotal in their analysis. Probabilistic programs are central in security for describing cryptographic constructions (such as randomised encryption) and security experiments. In addition, probabilistic programs are an active research topic in quantitative information flow. Quantum programs are inherently probabilistic due to the random outcomes of quantum measurements. Finally, probabilistic programs can be used for approximate computing, e.g., by specifying reliability requirements for programs that allocate data in unreliable memory and use unreliable operations in hardware (so as to save energy dissipation) [1]. Other applications include [4] scientific modeling, information retrieval, bio–informatics, epidemiology, vision, seismic analysis, semantic web, business intelligence, human cognition, and more. Microsoft has started an initiative to improve the usability of probabilistic programming which has resulted in languages such as R2 [13] and Tabular [5] emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carbin, M., Misailovic, S., Rinard, M.C.: Verifying quantitative reliability for programs that execute on unreliable hardware. In: Proceedings of OOPSLA, pp. 33–52. ACM Press (2013)

    Google Scholar 

  2. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic Programming Languages (electronic) (2014). http://dippl.org

  4. Gordon, A.D.: An agenda for probabilistic programming: Usable, portable, and ubiquitous (2013)

    Google Scholar 

  5. Gordon, A.D., Graepel, T., Rolland, N., Russo, C.V., Borgström, J., Guiver, J.: Tabular: a schema-driven probabilistic programming language. In: Proceedings of POPL, pp. 321–334. ACM Press (2014)

    Google Scholar 

  6. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S K.: Probabilistic programming. In: Proceedings of FOSE, pp. 167–181. ACM Press (2014)

    Google Scholar 

  7. Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.-P., McIver, A., Olmedo, F.: Conditioning in probabilistic programming. In: Proceedings of MFPS, ENTCS

    Google Scholar 

  8. Gretz, F., Katoen, J.-P., McIver, A.: Prinsys—on a quest for probabilistic loop invariants. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 193–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Gretz, F., Katoen, J.-P., McIver, A.: Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Perform. Eval. 73, 110–132 (2014)

    Article  Google Scholar 

  10. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P., Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg (2014)

    Google Scholar 

  11. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 307–318. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  12. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant generation for probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Nori, A.V., Hur, C.-K., Rajamani, S.K., Samuel, S.: R2: An efficient MCMC sampler for probabilistic programs. In: Proceedings of AAAI, AAAI Press (2014)

    Google Scholar 

  14. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy approach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Acknowledgement

This work is funded by the EU FP7-projects SENSATION and MEALS, and the Excellence Initiative of the German federal and state government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost-Pieter Katoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Katoen, JP. (2015). Probabilistic Programming: A True Verification Challenge. In: Finkbeiner, B., Pu, G., Zhang, L. (eds) Automated Technology for Verification and Analysis. ATVA 2015. Lecture Notes in Computer Science(), vol 9364. Springer, Cham. https://doi.org/10.1007/978-3-319-24953-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24953-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24952-0

  • Online ISBN: 978-3-319-24953-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics