Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Temporal-Compress and Shorter SIFT Research on Web Videos

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9403))

  • 2973 Accesses

Abstract

The large-scale video data on the web contain a lot of semantics, which are an important part of semantic web. Video descriptors can usually represent somewhat the semantics. Thus, they play a very important role in web multimedia content analysis, such as Scale-invariant feature transform (SIFT) feature. In this paper, we proposed a new video descriptor, called a temporal-compress and shorter SIFT(TC-S-SIFT) which can efficiently and effectively represent the semantics of web videos. By omitting the least discriminability orientation in three stages of standard SIFT on every representative frame, the dimensions of the shorter SIFT are reduced from 128-dimension to 96-dimension to save space storage. Then, the SIFT can be compressed by tracing SIFT features on video temporal domain, which highly compress the quantity of local features to reduce visual redundancy, and keep basically the robustness and discrimination. Experimental results show our method can yield comparable accuracy and compact storage size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant key points. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. CVIU 110(3), 346–359 (2008)

    Google Scholar 

  5. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of Computer Vision and Pattern Recognition, pp. 560–513 (2004)

    Google Scholar 

  6. Yi, J., Peng, Y., Xiao, J.: Exploiting semantic and visual context for effective video annotation. IEEE Trans. Multimed., 1400–1414 (2013)

    Google Scholar 

  7. Megrhi, S., Souidene, W., Beghdadi, A.: Spatio-temporal salient feature extraction for perceptual content based video retrieval. In: CVCS, pp. 1–7 (2013)

    Google Scholar 

  8. Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Trans. on Multimedia, pp. 1190–1208 (2006)

    Google Scholar 

  9. Malekesmaeili, M., Fatourechi, M., Ward, R.K.: Video copy detection using temporally informative representative images. In: International Conference on Machine Learning and Applications, pp. 69–74 (2009)

    Google Scholar 

  10. Li, F.F., Fergus, R., Torralba, A.: Recognizing and learning object categories. In: Proceedings of the 12th IEEE International Conference on Computer Vision, Short course. The 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 506–513 (2009)

    Google Scholar 

  11. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 59–73 (2007)

    Google Scholar 

  12. Qian, Y., Hui, R., Gao, X.H.: 3D CBIR with sparse coding for image-guided neurosurgery. Signal Processing 93, 1673–1683 (2013)

    Article  Google Scholar 

  13. Burghouts, G.J., Geusebroek. J.M.: Performance evaluation of local colour invariants. Computer Vision and Image Understanding, 48–62 (2009)

    Google Scholar 

  14. Saeedi, P.P., Lawrence, D., Lowe, D.G.: Vision-based 3-D trajectory tracking for unknown environments. IEEE Transaction on Robotics 22(1), 119–136 (2006)

    Article  Google Scholar 

  15. Zhong, S.H., Liu, Y., Wu, G.S.: S-SIFT: a shorter SIFT without least discriminability visual orientation. In: Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence, vol. 1, pp. 669–672 (2012)

    Google Scholar 

  16. Zhu, G.K., Wang, Q., Yuan, Y., Yan, P.K.: SIFT on manifold: An intrinsic description. Neurocomputing 113, 227–233 (2013)

    Article  Google Scholar 

  17. Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal recognition. In: MacLean, W. (ed.) SCVMA 2004. LNCS, vol. 3667, pp. 91–103. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Girshick, A.R., Landy, M.S., Simoncelli, E.P.: Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14, 926–932 (2011)

    Article  Google Scholar 

  19. Reddy, K., Shah, M.: Recognizing 50 human action categories of web videos. In: Proc. Mach. Vision Applicat., pp. 1–11 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghua Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, Y., Jiang, C., Huang, X., Xiao, Z., Zhong, S. (2015). A Temporal-Compress and Shorter SIFT Research on Web Videos. In: Zhang, S., Wirsing, M., Zhang, Z. (eds) Knowledge Science, Engineering and Management. KSEM 2015. Lecture Notes in Computer Science(), vol 9403. Springer, Cham. https://doi.org/10.1007/978-3-319-25159-2_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25159-2_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25158-5

  • Online ISBN: 978-3-319-25159-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics