Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-dimensional Reputation Modeling Using Micro-blog Contents

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9384))

Included in the following conference series:

  • 729 Accesses

Abstract

In this paper, we investigate the issue of modeling corporate entities’ online reputation. We introduce a bayesian latent probabilistic model approach for e-Reputation analysis based on Dimensions (Reputational Concepts) Categorization and Opinion Mining from textual content. Dimensions to analyze e-Reputation are set up by analyst as latent variables. Machine Learning (ML) Natural Language Processing (NLP) approaches are used to label large sets of text passages. For each Dimension, several estimations of the relationship with each text passage are computed as well as Opinion and Priority. The proposed automatic path modeling algorithm explains Opinion or Priority scores based on selected Dimensions. Model Robustness’ is evaluated over RepLab dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.llorenteycuenca.com/.

References

  1. Mather, M., Sutherland, M.R.: Arousal-biased competition in perception and memory. Perspect. Psychol. Sci. 6(2), 114–133 (2011)

    Article  Google Scholar 

  2. Amigó, E., Carrillo de Albornoz, J., Chugur, I., Corujo, A., Gonzalo, J., Martín, T., Meij, E., de Rijke, M., Spina, D.: Overview of RepLab 2013: evaluating online reputation monitoring systems. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 333–352. Springer, Heidelberg (2013)

    Google Scholar 

  3. Amigó, E., Carrillo-de-Albornoz, J., Chugur, I., Corujo, A., Gonzalo, J., Meij, E., de Rijke, M., Spina, D.: Overview of RepLab 2014: author profiling and reputation dimensions for online reputation management. In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 307–322. Springer, Heidelberg (2014)

    Google Scholar 

  4. Villena Román, J., Lana Serrano, S., Martínez Cámara, E., González Cristóbal, J.C.: Tass-workshop on sentiment analysis at sepln (2013)

    Google Scholar 

  5. Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.P., Li, X.: Topical keyphrase extraction from twitter. In: Proceedings of the 49th Annual Meeting of the ACL: Human Language Technologies (2011)

    Google Scholar 

  6. Velcin, J., Kim, Y., Brun, C., Dormagen, J., SanJuan, E., Khouas, L., Peradotto, A., Bonnevay, S., Roux, C., Boyadjian, J., et al.: Investigating the image of entities in social media: Dataset design and first results. In: LREC (2014)

    Google Scholar 

  7. Peleja, F., Santos, J., Magalhães, J.: Reputation analysis with a ranked sentiment-lexicon. In: Proceedings of the 37th SIGIR conference (2014)

    Google Scholar 

  8. McDonald, G., Deveaud, R., McCreadie, R., Macdonald, C., Ounis, I.: Tweet enrichment for effective dimensions classification in online reputation management. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  9. Qureshi, M.A., O’Riordan, C., Pasi, G.: Exploiting wikipedia for entity name disambiguation in tweets. In: NLP and Information Systems (2014)

    Google Scholar 

  10. Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., Petrak, J., Bontcheva, K.: Analysis of named entity recognition and linking for tweets. Inf. Process. Manag. 51(2), 32–49 (2015)

    Article  Google Scholar 

  11. Damak, F., Pinel-Sauvagnat, K., Boughanem, M., Cabanac, G.: Effectiveness of state-of-the-art features for microblog search. In: The 28th ACM Symposium on Applied Computing (2013)

    Google Scholar 

  12. Cossu, J.V., Janod, K., Ferreira, E., Gaillard, J., El-Bèze, M.: Nlp-based classifiers to generalize experts assessments in e-reputation. In: CLEF (2015)

    Google Scholar 

Download references

Acknowledgment

This work is funded by the project ImagiWeb ANR-2012-CORD-002-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric SanJuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cossu, JV., SanJuan, E., Torres-Moreno, JM., El-Bèze, M. (2015). Multi-dimensional Reputation Modeling Using Micro-blog Contents. In: Esposito, F., Pivert, O., Hacid, MS., Rás, Z., Ferilli, S. (eds) Foundations of Intelligent Systems. ISMIS 2015. Lecture Notes in Computer Science(), vol 9384. Springer, Cham. https://doi.org/10.1007/978-3-319-25252-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25252-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25251-3

  • Online ISBN: 978-3-319-25252-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics