Abstract
Urban traffic congestion has become a serious issue, and improving the flow of traffic through cities is critical for environmental, social and economic reasons. Improvements in Adaptive Traffic Signal Control (ATSC) have a pivotal role to play in the future development of Smart Cities and in the alleviation of traffic congestion. Here we describe an autonomic method for ATSC, namely, reinforcement learning (RL). This chapter presents a comprehensive review of the applications of RL to the traffic control problem to date, along with a case study that showcases our developing multi-agent traffic control architecture. Three different RL algorithms are presented and evaluated experimentally. We also look towards the future and discuss some important challenges that still need to be addressed in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Horizon 2020: http://ec.europa.eu/programmes/horizon2020/en (2014)
Traas: Traci as a service. http://traas.sourceforge.net/cms/ (2014)
Abdoos, M., Mozayani, N., Bazzan, A.: Traffic light control in non-stationary environments based on multi agent q-learning. In: 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 1580–1585 (2011). doi:10.1109/ITSC.2011.6083114
Abdoos, M., Mozayani, N., Bazzan, A.: Hierarchical control of traffic signals using q-learning with tile coding. Appl. Intell. 40(2), 201–213 (2014). doi:10.1007/s10489-013-0455-3
Abdulhai, B., Kattan, L.: Reinforcement learning: introduction to theory and potential for transport applications. Can. J. Civ. Eng. 30(6), 981–991 (2003). doi:10.1139/l03-014
Abdulhai, B., Pringle, R., Karakoulas, G.: Reinforcement learning for true adaptive traffic signal control. J. Transp. Eng. 129(3), 278–285 (2003). doi:10.1061/(ASCE)0733-947X(2003)129:3(278)
Arel, I., Liu, C., Urbanik, T., Kohls, A.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell. Transp. Syst. 4(2), 128–135 (2010). doi:10.1049/iet-its.2009.0070
Bakker, B.: Cooperative multi-agent reinforcement learning of traffic lights. In: ACM Transactions on Multimedia Computing, Communications, and Applications (2005)
Bakker, B., Whiteson, S., Kester, L., Groen, F.: Traffic light control by multiagent reinforcement learning systems. In: Babuška, R., Groen, F. (eds.) Interactive Collaborative Information Systems. Studies in Computational Intelligence, vol. 281, pp. 475–510. Springer, Berlin/Heidelberg (2010). doi:10.1007/978-3-642-11688-9_18
Balaji, P., German, X., Srinivasan, D.: Urban traffic signal control using reinforcement learning agents. IET Intell. Transp. Syst. 4(3), 177–188 (2010). doi:10.1049/iet-its.2009.0096
Bazzan, A.L.C.: Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Auton. Agent. Multi Agent Syst. 18(3), 342–375 (2009). doi:10.1007/s10458-008-9062-9
Bazzan, A.L.C., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29, 375–403 (2014). doi:10.1017/S0269888913000118
Brys, T., Pham, T.T., Taylor, M.E.: Distributed learning and multi-objectivity in traffic light control. Connect. Sci. 26(1), 65–83 (2014). doi:10.1080/09540091.2014.885282
Busoniu, L., Babuška, R., Schutter, B.: Multi-agent reinforcement learning: an overview. In: Srinivasan, D., Jain, L. (eds.) Innovations in Multi-agent Systems and Applications - 1. Studies in Computational Intelligence, vol. 310, pp. 183–221. Springer, Berlin/Heidelberg (2010). doi:10.1007/978-3-642-14435-6_7
Chen, B., Cheng, H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497 (2010). doi:10.1109/TITS.2010.2048313
Chin, Y.K., Bolong, N., Yang, S.S., Teo, K.: Exploring q-learning optimization in traffic signal timing plan management. In: 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 269–274 (2011). doi:10.1109/CICSyN.2011.64
Cools, S.B., Gershenson, C., D’Hooghe, B.: Self-organizing traffic lights: a realistic simulation. In: Prokopenko, M. (ed.) Advances in Applied Self-organizing Systems, Advanced Information and Knowledge Processing, pp. 41–50. Springer, London (2008). doi:10.1007/978-1-84628-982-8_3
Dresner, K., Stone, P.: Multiagent traffic management: opportunities for multiagent learning. In: Tuyls, K., Hoen, P., Verbeeck, K., Sen, S. (eds.) Learning and Adaption in Multi-agent Systems. Lecture Notes in Computer Science, vol. 3898, pp. 129–138. Springer, Berlin/Heidelberg (2006). doi:10.1007/11691839_7
El-Tantawy, S., Abdulhai, B.: An agent-based learning towards decentralized and coordinated traffic signal control. In: 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2010, pp. 665–670 (2010). doi:10.1109/ITSC.2010.5625066
El-Tantawy, S., Abdulhai, B.: Multi-agent reinforcement learning for integrated network of adaptive traffic signal controllers (marlin-atsc). In: 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2012, pp. 319–326 (2012). doi:10.1109/ITSC.2012.6338707
El-Tantawy, S., Abdulhai, B., Abdelgawad, H.: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (marlin-atsc): methodology and large-scale application on downtown Toronto. IEEE Trans. Intell. Transp. Syst. 14(3), 1140–1150 (2013). doi:10.1109/TITS.2013.2255286
Houli, D., Zhiheng, L., Yi, Z.: Multiobjective reinforcement learning for traffic signal control using vehicular ad hoc network. EURASIP J. Adv. Signal Process. 2010, 7:1–7:7 (2010). doi:10.1155/2010/724035
Isa, J., Kooij, J., Koppejan, R., Kuijer, L.: Reinforcement learning of traffic light controllers adapting to accidents. In: Design and Organisation of Autonomous Systems (2006)
Khamis, M., Gomaa, W.: Enhanced multiagent multi-objective reinforcement learning for urban traffic light control. In: 11th International Conference on Machine Learning and Applications (ICMLA), 2012, vol. 1, pp. 586–591 (2012). doi:10.1109/ICMLA.2012.108
Khamis, M.A., Gomaa, W.: Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework. Eng. Appl. Artif. Intell. 29, 134–151 (2014). doi:10.1016/j.engappai.2014.01.007
Khamis, M., Gomaa, W., El-Shishiny, H.: Multi-objective traffic light control system based on Bayesian probability interpretation. In: 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2012, pp. 995–1000 (2012). doi:10.1109/ITSC.2012.6338853
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)
Kuyer, L., Whiteson, S., Bakker, B., Vlassis, N.: Multiagent reinforcement learning for urban traffic control using coordination graphs. In: Daelemans, W., Goethals, B., Morik, K. (eds.) Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 5211, pp. 656–671. Springer, Berlin/Heidelberg (2008). doi:10.1007/978-3-540-87479-9_61
Liu, Z.: A survey of intelligence methods in urban traffic signal control. Int. J. Comput. Sci. Netw. Secur. 7(7), 105–112 (2007)
Lu, S., Liu, X., Dai, S.: Incremental multistep q-learning for adaptive traffic signal control based on delay minimization strategy. In: 7th World Congress on Intelligent Control and Automation, 2008. WCICA 2008, pp. 2854–2858 (2008). doi:10.1109/WCICA.2008.4593378
Nair, R., Varakantham, P., Tambe, M., Yokoo, M.: Networked distributed POMDPs: a synthesis of distributed constraint optimization and POMDPs. In: Proceedings of the 20th National Conference on Artificial Intelligence, AAAI’05, vol. 1, pp. 133–139. AAAI Press, Pittsburgh (2005)
Ono, N., Fukumoto, K.: A modular approach to multi-agent reinforcement learning. In: Weiß, G. (ed.) Distributed Artificial Intelligence Meets Machine Learning in Multi-Agent Environments. Lecture Notes in Computer Science, vol. 1221, pp. 25–39. Springer, Berlin/Heidelberg (1997). doi:10.1007/3-540-62934-3_39
Pham, T., Brys, T., Taylor, M.E.: Learning coordinated traffic light control. In: Proceedings of the Adaptive and Learning Agents workshop (at AAMAS-13) (2013)
Prashanth, L., Bhatnagar, S.: Reinforcement learning with average cost for adaptive control of traffic lights at intersections. In: 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 1640–1645 (2011). doi:10.1109/ITSC.2011.6082823
Prashanth, L., Bhatnagar, S.: Reinforcement learning with function approximation for traffic signal control. IEEE Trans. Intell. Transp. Syst. 12(2), 412–421 (2011). doi:10.1109/TITS.2010.2091408
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)
Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems. Tech. Rep. 166, Cambridge University Engineering Department (1994)
Salkham, A., Cahill, V.: Soilse: a decentralized approach to optimization of fluctuating urban traffic using reinforcement learning. In: 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2010, pp. 531–538 (2010). doi:10.1109/ITSC.2010.5625145
Salkham, A., Cunningham, R., Garg, A., Cahill, V.: A collaborative reinforcement learning approach to urban traffic control optimization. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT ’08, vol. 2, pp. 560–566 (2008). doi:10.1109/WIIAT.2008.88
Singh, S., Jaakkola, T., Littman, M., Szepesvári, C.: Convergence results for single-step on-policy reinforcement-learning algorithms. Mach. Learn. 38(3), 287–308 (2000). doi:10.1023/A:1007678930559
Steingröver, M., Schouten, R., Peelen, S., Nijhuis, E., Bakker, B.: Reinforcement learning of traffic light controllers adapting to traffic congestion. In: Proceedings of the Belgium-Netherlands Artificial Intelligence Conference, BNAIC ’05 (2005)
Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)
Thorpe, T.L., Anderson, C.W.: Traffic light control using sarsa with three state representations. Tech. rep., IBM Corporation (1996)
Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College (1989)
Watkins, C., Dayan, P.: Technical note: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). doi:10.1023/A:1022676722315
Webster, F.V.: Traffic signal settings. Road Research Technical Paper No. 39, Road Research Laboratory, London, published by HMSO (1958)
Wen, K., Qu, S., Zhang, Y.: A stochastic adaptive control model for isolated intersections. In: IEEE International Conference on Robotics and Biomimetics, 2007. ROBIO 2007, pp. 2256–2260 (2007). doi:10.1109/ROBIO.2007.4522521
Wiering, M.: Multi-agent reinforcement learning for traffic light control. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 1151–1158. Morgan Kaufmann, San Francisco (2000)
Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State-of-the-Art. Springer, Heidelberg (2012)
Wiering, M., Vreeken, J., van Veenen, J., Koopman, A.: Simulation and optimization of traffic in a city. In: IEEE Intelligent Vehicles Symposium, pp. 453–458 (2004). doi:10.1109/IVS.2004.1336426
Woolridge, M.: Introduction to Multiagent Systems. Wiley, New York (2001)
Xu, L.H., Xia, X.H., Luo, Q.: The study of reinforcement learning for traffic self-adaptive control under multiagent markov game environment. Math. Probl. Eng. 2013 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Mannion, P., Duggan, J., Howley, E. (2016). An Experimental Review of Reinforcement Learning Algorithms for Adaptive Traffic Signal Control. In: McCluskey, T., Kotsialos, A., Müller, J., Klügl, F., Rana, O., Schumann, R. (eds) Autonomic Road Transport Support Systems. Autonomic Systems. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-25808-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-25808-9_4
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-25806-5
Online ISBN: 978-3-319-25808-9
eBook Packages: Computer ScienceComputer Science (R0)