Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cooperative Knowledge Representation and Classification for Design Projects

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2014)

Abstract

Design is a knowledge-intense activity. In design projects, both domain knowledge and cooperative knowledge are produced. Present knowledge engineering methods focus on how to extract and model expert knowledge, but cooperative knowledge that is produced in cooperative activities is usually ignored. In this paper, the cooperative knowledge in design projects is studied, and a cooperative knowledge representation structure as well as a framework to classify it is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bannon, L., Schmidt, K.: Taking CSCW seriously: supporting articulation work* 1(1), 1–33 (1992)

    Google Scholar 

  2. Bekhti, S., Matta, N.: Project memory: an approach of modelling and reusing the context and the design rationale. In: Proceedings of IJCAI, vol. 3 (2003)

    Google Scholar 

  3. Buckingham Shum, S.: Representing hard-to-formalise, contextualised, multidisciplinary, organisational knowledge. In: AAI Spring Symposium on Artificial Intelligence in Knowledge Management, pp. 9–16 (1997)

    Google Scholar 

  4. Castillo Navetty, O., Matta, N.: Definition of a practical learning system. In: ITHET 2005: 6th International Conference on Information Technology Based Higher Education and Training, 2005, pp. 5–10 (2005)

    Google Scholar 

  5. Cohen, H., Lefebvre, C.: Handbook of categorization in cognitive science, Elsevier (2005)

    Google Scholar 

  6. Conklin, J., Begeman, M.L.: gIBIS: a hypertext tool for exploratory policy discussion. ACM Transactions on Information Systems 6, 303–331 (1988)

    Article  Google Scholar 

  7. Dietterich, T.G.: Learning at the knowledge level. Machine Learning 1(3), 287–315 (1986). http://link.springer.com/10.1007/BF00116894

  8. Djaiz, C., Matta, N.: Project situations aggregation to identify cooperative problem solving strategies. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 687–697. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dnecker, C., Kolmayer, E.: Element de psychologie cognitive pour les sciences de l’information ecole nationale superieure des sciences de l’information et des bibliotheques, ed., Villeurbanne

    Google Scholar 

  10. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78 (2012). http://dl.acm.org/citation.cfm?doid=2347736.2347755

  11. Ducellier, G., Matta, N., Charlot, Y., Tribouillois, F.: Traceability and structuring of cooperative Knowledge in design using PLM. Int. J. Knowl. Manage. Res. Pract. 11(4), 20 (2013)

    Google Scholar 

  12. Ducellier, G.: Thèse aux plateformes PLM, University Troyes, France (2008)

    Google Scholar 

  13. Easterby-Smith, M.P.V., Lyles, M.: The Blackwell handbook of organizational learning and knowledge management. Adm. Sci. Q. 48, 676 (2003)

    Google Scholar 

  14. Fensel, D.: Ontologies : Silver Bullet for Knowledge

    Google Scholar 

  15. Goodman, R.M., Smyth, P.: An information theoretic approach to rule induction from databases. IEEE Trans. Knowl. Data Eng. 4(4), 301–316 (1992)

    Article  Google Scholar 

  16. Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 43, 907–928 (1995). doi:10.1006/ijhc.1995.1081

  17. Gruber, T.R., Russell, D.M.: Design Knowledge and Design Rationale : A Framework for Representation, Capture, and Use (1991)

    Google Scholar 

  18. Khoshafian, S., Buckiewicz, M.: Introduction to Groupware, Workflow, and Workgroup Computing. Wiley, New York (1995)

    Google Scholar 

  19. King, R.D., Feng, C., Sutherland, A.: StatLog : comparison of classification algorithms on large real-world problems. 5, 1–70

    Google Scholar 

  20. Klein, M.: Capturing design rationale in concurrent engineering teams. Computer 26, 39–47 (1993)

    Google Scholar 

  21. Mai, J.: Classification in context: relativity, reality, and representation. Knowl. Organ. 31(1), 39–48 (2004)

    Google Scholar 

  22. Matta, N., Ducellier, G., Charlot, Y., Beldjoudi, M.R., Tribouillois, F., Hibon, E.: Traceability of design project knowledge using PLM. In: 2011 International Conference on Collaboration Technologies and Systems (CTS), pp. 233–240, 23–27 May 2011

    Google Scholar 

  23. Matta, N., Ducellier, G.: An approach to keep track of project knowledge in design. In: Proceeding IC3 K/KMIS, 5th International Conference on Knowledge Management and Information Sharing, p. 12 (2013)

    Google Scholar 

  24. Matta, N., Ducellier, G., Djaiz, C.: Traceability and structuring of cooperative knowledge in design using PLM. Knowl. Manage. Res. Prac. 11(1), 53–61 (2013). http://dx.doi.org/10.1057/kmrp.2012.38

  25. Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for service ontologies: aligning OWL-S to dolce. In: WWW pp. 563–572 (2004)

    Google Scholar 

  26. Miksa, F.: The DDC, The Universe of Knowledge, and the Post-modern Library. Forest Press, Albany (1998)

    Google Scholar 

  27. Moran, T.P., Carroll, J.M.: Design Rationale: Concepts, Techniques, and Use. L. Erlbaum Associates Inc, Hillsdale (1996)

    Google Scholar 

  28. Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982)

    Article  MathSciNet  Google Scholar 

  29. Pahl, G., et al.: Engineering design: a systematic approach (2007). http://www.amazon.com/Engineering-Design-Systematic-Gerhard-Pahl/dp/1846283183

  30. Sathi, A, Fox, M.S., Greenberg, M.: Representation of activity knowledge for project management. IEEE Trans. Pattern Anal. Mach. Intell. 7(5), 531–552 (1985). http://www.ncbi.nlm.nih.gov/pubmed/21869291

  31. Schreiber, G., et al.: CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9(6), 28–37 (1994)

    Article  Google Scholar 

  32. Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction from databases. IEEE Trans. Knowl. Data Eng. 4(4), 301–316 (1992)

    Article  Google Scholar 

  33. Sowa, J.F.: Knowledge representation: logical, philosophical, and computational foundations (1999)

    Google Scholar 

  34. Zacklad, M.: Communities of action: a cognitive and social approach to the design of CSCW systems. In: Proceedings of the 2003 International ACM SIGGROUP Conference on Supporting Group Work. GROUP 2003, pp. 190–197. ACM, New York, NY, USA (2003). http://doi.acm.org/10.1145/958160.958190

  35. Michie, D., Speigelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classification (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghang Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dai, X., Matta, N., Ducellier, G. (2015). Cooperative Knowledge Representation and Classification for Design Projects. In: Fred, A., Dietz, J., Aveiro, D., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2014. Communications in Computer and Information Science, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-319-25840-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25840-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25839-3

  • Online ISBN: 978-3-319-25840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics