Abstract
This chapter summarizes our most relevant experiences in the use of ROS in the deployment of Real-World professional service robotics applications: a mobile robot for CBRN intervention missions, a tunnel inspection and surveillance robot, an upper body torso robot, an indoor healthcare logistic transport robot and a robot for precision viticulture. The chapter describes the mentioned projects and how ROS has been used in them. It focuses on the application development, on the ROS modules used and the ROS tools and components applied, and on the lessons learnt in the development process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Front, Rear, Arm.
References
M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an open-source Robot Operating System, in ICRA Workshop on Open Source Software (2009)
ROS Conference. http://www.roscon.org (2015)
R. Guzman, R. Navarro, J. Ferre, M. Moreno, RESCUER: development of a modular chemical, biological, radiological, and nuclear robot for intervention, sampling, and situation awareness. J. Field Robot. (2015). doi:10.1002/rob.21588
rqt. http://wiki.ros.org/rqt (2015)
Google Earth. https://www.google.com/earth/ (2013)
MoveIt! http://moveit.ros.org/ (2015)
Kinematics and Dynamics Library KDL. http://www.orocos.org/kdl (2013)
Gazebo. http://gazebosim.org/ (2015)
PointCloud Library. http://pointclouds.org/ (2015)
multimaster\(\_\)fkie, retrieved 2015, from http://wiki.ros.org/multimaster\(\_\)fkie
rosbridge\(\_\)suite, retrieved 2015, from http://wiki.ros.org/rosbridge\(\_\)suite
BootStrap. http://getbootstrap.com/ (2015)
Django. https://www.djangoproject.com/ (2015)
URDF Unified Robot Description Format. http://wiki.ros.org/urdf (2015)
Robot Web Tools. http://robotwebtools.org/ (2015)
A. Linz, A. Ruckelshausen, E. Wunder, Autonomous service robots for orchards and vineyards: 3D simulation environment of multi sensor-based navigation and applications, in ICPA (2014)
A.G. Sick, NAV200 Operating Instructions. http://www.sick.com. Accessed 12 Feb 2007
M. Bergerman, S.M. Maeta, J. Zhang, G.M. Freitas, B. Hamner, S. Singh, G. Kanto, Robot farmers: autonomous orchard vehicles help tree fruit production. IEEE Robot. Autom. Mag. 54–63
R.S. Nah, Y. Zhang, R. Pillat, ROS Support from MATLAB, Presentation in ROSCon Chicago, Sep 2014
S. Marden, M. Whitty, GPS-free localisation and navigation of an unmanned ground vehicle for yield forecasting in a vineyard, in Recent Advances in Agricultural Robotics, International workshop collocated with the 13th International Conference on Intelligent Autonomous Systems (IAS-13)
H. Mousazadeh, A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramech. 50(3), 211–232 (2013). doi:10.1016/j.jterra.2013.03.004. ISSN: 0022-4898
Swift Navigation. http://www.swift-nav.com (2015)
ROS robot\(\_\)localization
The Player Project. http://playerstage.sourceforge.net/ (2015)
OpenJAUS. http://openjaus.com/ (2015)
Coppelia Robotics V-REP. http://www.coppeliarobotics.com/ (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Guzman, R., Navarro, R., Beneto, M., Carbonell, D. (2016). Robotnik—Professional Service Robotics Applications with ROS. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 625. Springer, Cham. https://doi.org/10.1007/978-3-319-26054-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-26054-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26052-5
Online ISBN: 978-3-319-26054-9
eBook Packages: EngineeringEngineering (R0)