Abstract
This paper describes an approach providing end-users with more insight to better understand the results of their queries. Using a clustering algorithm, the idea is to form subgroups of answers sharing some properties and to discover explanations for each subgroup. The originality of this work is that the data considered for characterizing each cluster of answers is not limited to the attributes used in the query. The objective is to enable the users to comprehend the structure of the results of their queries, using linguistic labels taken from their own vocabulary.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amgoud, L., Prade, H., Serrut, M.: Flexible querying with argued answers. In: Proc. of the 14th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2005), Reno, Nevada, USA, pp. 573–578(2005)
de Calmès, M., Dubois, D., HĂ¼llermeier, E., Prade, H., Sedes, F.: Flexibility and fuzzy case-based evaluation in querying: An illustration in an experimental setting. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(1), 43–66 (2003)
Gaasterland, T., Godfrey, P., Minker, J.: An overview of cooperative answering. J. Intell. Inf. Syst. 1(2), 123–157 (1992)
Herschel, M.: Wondering why data are missing from query results?: ask conseil why-not. In: He, Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R. (eds.) CIKM, pp. 2213–2218. ACM (2013)
Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational clustering algorithms for web mining. IEEE T. Fuzzy Systems 9(4), 595–607 (2001)
Lesot, M.-J., d’Allonnes, A.R.: Credit-card fraud profiling using a hybrid incremental clustering methodology. In: HĂ¼llermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 325–336. Springer, Heidelberg (2012)
Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010)
Pivert, O., Prade, H.: Detecting suspect answers in the presence of inconsistent information. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 278–297. Springer, Heidelberg (2012)
Roy, S., Suciu, D.: A formal approach to finding explanations for database queries. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD 2014, pp. 1579–1590. ACM, New York (2014)
Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Moreau, A., Pivert, O., Smits, G. (2016). A Clustering-Based Approach to the Explanation of Database Query Answers. In: Andreasen, T., et al. Flexible Query Answering Systems 2015. Advances in Intelligent Systems and Computing, vol 400. Springer, Cham. https://doi.org/10.1007/978-3-319-26154-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-26154-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26153-9
Online ISBN: 978-3-319-26154-6
eBook Packages: Computer ScienceComputer Science (R0)