Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-Time Implementation of Pursuit-Evasion Games Between Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 370))

  • 836 Accesses

Abstract

The problem of two-player pursuit-evasion games with unmanned aerial vehicles (UAVs) in a three-dimensional environment is tackled. A game-theoretical framework is presented, enabling the solution of dynamic games in discrete time. Depending on the cardinality of the action sets, the time complexity of solving such games could rise tremendously. Therefore, a tradeoff between available actions and computational time of the solution has to be found. It was shown that the chosen action space allows manoeuvres with sufficient accuracy, assuring the convergence of the games, while the computational time of the algorithm satisfies the real-time specifications. The UAVs taking part in the pursuit-evasion games are two identical quad-rotor systems with the same dynamical constraints, while the evaders’ absolute velocity is smaller than the pursuers’. The approach was simulated on an embedded computer and successfully tested for real-time applicability. Hence, the implementation and real-time execution on a physical UAV system is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nahin, P.J.: Chases and Escapes: The Mathematics of Pursuit and Evasion (Princeton Puzzlers). Princeton University Press, Princeton (2012)

    Google Scholar 

  2. Littlewood, J.E.: Littlewood’s Miscellany. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  3. Sgall, J.: Solution of David Gale’s lion and man problem. Theor. Comput. Sci. 259(1–2), 663–670 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, T.H, Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Autonom. Rob. (Springer Science and Business Media) 31(4), 299–316 (2011)

    Google Scholar 

  5. LaValle, S.M., Hutchinson, S.A.: Game theory as a unifying structure for a variety of robot tasks. In: Proceedings of 8th IEEE International Symposium on Intelligent Control, pp. 429–434. IEEE (1993)

    Google Scholar 

  6. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit. Control and Optimization. Wiley, New York (1965)

    Google Scholar 

  7. Vieira, M.A.M., Govindan, R., Sukhatme, G.: Scalable and practical pursuit-evasion. In: Proceedings of the Second International Conference on Robot Communication and Coordination, 2009 (ROBOCOMM ’09), pp. 1–6 (2009)

    Google Scholar 

  8. Beatty, M.: Principles of Engineering Mechanics: Volume 2 Dynamics—The Analysis of Motion, ser. Mathematical Concepts and Methods in Science and Engineering. Springer, New York (2006)

    Google Scholar 

  9. Bouabdallah, S., Siegwart, R.: Advances in Unmanned Aerial Vehicles. Design and Control of a Miniature Quadrotor, pp. 171–210. Springer Press, New York (2007)

    Google Scholar 

  10. Voos, H.: Entwurf eines Flugreglers für ein vierrotoriges unbemanntes Fluggerät (Control systems design for a quad-rotor UAV). Automatisierungstechnik 57(9), 423–431 (2009)

    Article  Google Scholar 

  11. Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design, 1st edn. Wiley, New York (1995)

    Google Scholar 

  12. Alexopoulos, A., Kandil, A.A., Orzechowski, P., Badreddin, E.: A comparative study of collision avoidance techniques for unmanned aerial vehiclespp, pp. 1969–1974. In: SMC (2013)

    Google Scholar 

  13. BaĹźar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory (Classics in Applied Mathematics), 2nd edn. Society for Industrial & Applied Mathematics (1999)

    Google Scholar 

  14. Nash, J.F.: Non-cooperative games. Ph.D. dissertation, Princeton University, Princeton (1950)

    Google Scholar 

  15. Thomas, L.C.: Games. Dover Books on Mathematics,Theory and Applications. Dover Publications (1984)

    Google Scholar 

  16. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 60th-Anniversary edn. Princeton University Press, Princeton (2007)

    Google Scholar 

  17. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  18. Raspberry Pi Foundation: Raspberry Pi. www.raspberrypi.org (2014)

  19. CubieTech Ltd.: Cubieboard—a series of open ARM miniPCs. www.cubieboard.org (2014)

  20. Texas Instruments Inc.: BeagleBoard.org. www.bealgeboard.org (2014)

  21. Texas Instruments Inc.: BeagleBone Black. www.beagleboard.org/Products/BeagleBoneBlack (2014)

  22. Chatterjee, B.: N-Person Game. The Mathworks Inc. www.mathworks.com/matlabcentral/fileexchange/27837-n-person-game (2010)

  23. Chatterjee, B.: An optimization formulation to compute Nash equilibrium in finite games. In: Proceeding of International Conference on Methods and Models in Computer Science, pp. 1–5 (2009)

    Google Scholar 

  24. Johnson, S.G.: The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt (2013)

  25. Kraft, D.: A Software Package for Sequential Quadratic Programming. DFVLR, Cologne (1988)

    MATH  Google Scholar 

  26. Kraft, D.: Algorithm 733: TOMPFortran modules for optimal control calculations. ACM Trans. Math. Softw. 20(3), 262–281 (1994)

    Article  MATH  Google Scholar 

  27. MikroKopter: MK-QuadroKopter/L4-ME. http://www.mikrokopter.de/ucwiki/MK-Quadro (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Alexopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alexopoulos, A., Schmidt, T., Badreddin, E. (2016). Real-Time Implementation of Pursuit-Evasion Games Between Unmanned Aerial Vehicles. In: Filipe, J., Gusikhin, O., Madani, K., Sasiadek, J. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-319-26453-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26453-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26451-6

  • Online ISBN: 978-3-319-26453-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics