Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evidential Link Prediction Based on Group Information

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9468))

Abstract

Link prediction has become a common way to infer new associations among actors in social networks. Most existing methods focus on the local and global information neglecting the implication of the actors in social groups. Further, the prediction process is characterized by a high complexity and uncertainty. In order to address these problems, we firstly introduce a new evidential weighted version of the social networks graph-based model that encapsulates the uncertainty at the edges level using the belief function framework. Secondly, we use this graph-based model to provide a novel approach for link prediction that takes into consideration both groups information and uncertainty in social networks. The performance of the method is experimented on a real world social network with group information and shows interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Adar, E., Ré, C.: Managing uncertainty in social networks. Data Eng. Bull. 30(2), 23–31 (2007)

    Google Scholar 

  3. Ben Dhaou, S., Kharoune, M., Martin, A., Ben Yaghlane, B.: Belief Approach for Social Networks. In: Cuzzolin, F. (ed.) BELIEF 2014. LNCS, vol. 8764, pp. 115–123. Springer, Heidelberg (2014)

    Google Scholar 

  4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  6. Johansson, F., Svenson, P.: Constructing and analyzing uncertain social networks from unstructured textual data. In: Özyer, T., Erdem, Z., Rokne, J., Khoury, S. (eds.) Mining Social Networks and Security Informatics. Lecture Notes in Social Networks, pp. 41–61. Springer, Netherlands (2014)

    Google Scholar 

  7. Kossinets, G.: Effects of missing data in social networks. Soc. Netw. 28, 247–268 (2003)

    Article  Google Scholar 

  8. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  9. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS, pp. 548–556 (2012)

    Google Scholar 

  10. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 65, 025102 (2001)

    Google Scholar 

  11. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  12. Smets, P.: The transferable belief model for quantified belief representation. In: Smets, P. (ed.) Handbook of Defeasible Reasoning and Uncertainty Management Systems., pp. 267–301. Springer, Netherlands (1988)

    Google Scholar 

  13. Smets, P.: The canonical decomposition of a weighted belief. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 14, pp. 1896–1901 (1995)

    Google Scholar 

  14. Smets, P.: Application of the transferable belief model to diagnostic problems. Int. J. Intell. Syst. 13(2–3), 127–157 (1998)

    Article  MATH  Google Scholar 

  15. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Soundarajan, S., Hopcroft, J.: Using community information to improve the precision of link prediction methods. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 607–608. ACM (2012)

    Google Scholar 

  17. Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of twitter users for link prediction. Soc. Netw. Anal. Min. 3(4), 1063–1074 (2013)

    Article  Google Scholar 

  18. Valverde-Rebaza, J.C., de Andrade Lopes, A.: Link prediction in complex networks based on cluster information. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS, vol. 7589, pp. 92–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Valverde-Rebaza, J.C., de Andrade Lopes, A.: Link Prediction in Online Social Networks Using Group Information. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014, Part VI. LNCS, vol. 8584, pp. 31–45. Springer, Heidelberg (2014)

    Google Scholar 

  20. Zhang, Q.M., Lü, L., Wang, W.Q., Zhu, Y.X., Zhou, T.: Potential theory for directed networks. PLoS ONE 8(2), e55437 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrine Mallek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E. (2015). Evidential Link Prediction Based on Group Information. In: Prasath, R., Vuppala, A., Kathirvalavakumar, T. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2015. Lecture Notes in Computer Science(), vol 9468. Springer, Cham. https://doi.org/10.1007/978-3-319-26832-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26832-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26831-6

  • Online ISBN: 978-3-319-26832-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics