Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Tool for Learning Dynamic Bayesian Networks for Forecasting

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Its Applications (MICAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9414))

Included in the following conference series:

Abstract

Renewable energy is increasing its participation in power generation in many countries. In Mexico, the strategy is to generate 35 % of electricity from renewable sources by 2024. Currently only 18.3 % of the generated energy is obtained from renewable and clean sources. The integration of renewable energies in the energy market is a challenge due to their high variability, instability and uncertainty. Hence, energy forecast is the required service by the power generators to offer energy with certain degree of confidence. Dynamic Bayesian networks (DBNs) have proved to be an appropriate mechanism for uncertainty and time reasoning; however there is no basic tool that builds DBN using time series for a process. This paper describes the design, construction and tests for a DBNs learning tool. This tool has already been used to construct dynamic models for wind power forecast and in this paper it is used to describe the variation of the dam level caused by rainfall in a hydroelectric power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bayes net toolbox for matlab. Technical report, University of British Columbia, Canada (1997–2002)

    Google Scholar 

  2. Genie graphical network interface to smile software package to create decision theoretic models. Technical report, Pittsburgh University, USA (1998)

    Google Scholar 

  3. Andersen, S.K., Olesen, K.G., Jensen, F.V., Jensen, F.: Hugin: a shell for building Bayesian belief universes for expert systems. In: Proceedings of the Eleventh Joint Conference on Artificial Intelligence, IJCAI, 20–25 August 1989, Detroit, Michigan, USA, pp. 1080–1085 (1989)

    Google Scholar 

  4. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–348 (1992)

    MATH  Google Scholar 

  5. The Elvira Consortium: Elvira: An environment for creating and using probabilistic graphical models. In: Proceedings of the First European Workshop on Probabilistic graphical models (PGM 2002), pp. 1–11, Cuenca, Spain (2002)

    Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  7. Ibargüengoytia, P.H., Reyes, A.: On-line diagnosis of a power generation process using probabilistic models. In: 16th International Conference on Intelligent Systems Application to Power Systems, ISAP 2011, Hersonissos, Crete Greece. IEEE PES (2011)

    Google Scholar 

  8. Ibargüengoytia, P.H., Reyes, A., Romero, I., Pech, D., García, U.: Evaluating probabilistic graphical models for forecasting. In: International Conference on Intelligent Systems Application to Power Systems, ISAP 2015, Porto, Portugal. IEEE PES (2015)

    Google Scholar 

  9. Ibargüengoytia, P.H., Reyes, A., Romero-Leon, I., Pech, D., García, U.A., Sucar, L.E., Morales, E.F.: Wind power forecasting using dynamic Bayesian models. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014, Part II. LNCS, vol. 8857, pp. 184–197. Springer, Heidelberg (2014)

    Google Scholar 

  10. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley, CA, USA (2002)

    Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  12. Spirtes, P., Glymour, C., Sheines, R.: Causation, Prediction and Search. MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo H. Ibargüengoytia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ibargüengoytia, P.H., Reyes, A., Romero, I., Pech, D., García, U.A., Borunda, M. (2015). A Tool for Learning Dynamic Bayesian Networks for Forecasting. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27101-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27100-2

  • Online ISBN: 978-3-319-27101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics