Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Scalable Parallelism for Remote Sensing Analysis Models by Data Transformation Graph

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9530))

  • 1810 Accesses

Abstract

According to the great hunger in performance capability and scalability for remote sensing analysis models, it is important to exploit scalable parallelism for remote sensing data analysis models. In this paper, a method named data transformation graph (shortly DTG) is introduced, which describes an analysis model by transformations among data items. DTG can be used to study the solvability and performance of analysis models. Taking global drought detection as an example, its execution and optimization are studied carefully by DTG, and some methods are proposed for accelerating remote sensing data analysis models. At last, a distributed data-intensive computing test system is built based on Robinia, and global drought detection application is implemented for performance evaluation. The test result shows that DTG based parallelization and optimization improves the performance with high efficiency evidently, and DTG is valuable to study and optimize remote sensing data analysis models for higher performance in distributed and parallel computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Loveman, D.B.: High performance fortran. IEEE Parallel Distrib. Technol.: Syst. Appl. 1(1), 25–42 (1993)

    Article  Google Scholar 

  2. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

    Article  Google Scholar 

  3. Geist, A. (ed.): PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing. The MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  4. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface, vol. 1. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurr. Comput.: Prac. Exp. 17(2–4), 323–356 (2005)

    Article  Google Scholar 

  6. Cossu, R., Bally, P., Colin, O., Fusco, L.: ESA grid processing on demand for fast access to earth observation data and rapid mapping of flood events. European Geosciences Union General Assembly (2008)

    Google Scholar 

  7. Sekiguchi, S., Tanaka, Y., Kojima, I., Yamamoto, N., Yokoyama, S., Tanimura, Y., et al.: Design principles and IT overviews of the GEO Grid. IEEE Syst. J. 2(3), 374–389 (2008)

    Article  Google Scholar 

  8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI), pp. 137–150, December 2004

    Google Scholar 

  9. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2012)

    Google Scholar 

  10. Lee, C.A., Gasster, S.D., Plaza, A., Chang, C.I., Huang, B.: Recent developments in high performance computing for remote sensing: a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 508–527 (2011)

    Article  Google Scholar 

  11. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1099–1110. ACM (2008)

    Google Scholar 

  12. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Oper. Syst. Rev. 41(3), 59–72 (2007)

    Article  Google Scholar 

  13. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE: easy and efficient parallel processing of massive data sets. Proc. VLDB Endow. 1(2), 1265–1276 (2008)

    Article  Google Scholar 

  14. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. ACM SIGOPS Oper. Syst. Rev. 37(5), 29–43 (2003)

    Article  Google Scholar 

  15. Chang, F., et al.: Bigtable: a distributed storage system for structured data. In: OSDI 2006, pp. 205–218 (2006)

    Google Scholar 

  16. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow. 3(1–2), 330–339 (2010)

    Article  Google Scholar 

  17. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., et al.: Spanner: google’s globally-distributed database. In: Proceedings of the 10th USENIX Symposium on Operating System Design and Implementation (OSDI 2012), pp. 251–264 (2012)

    Google Scholar 

  18. Mandl, D.: Matsu: an elastic cloud connected to a sensorweb for disaster response. In: Workshop on Cloud Computing for Spacecraft Operations, Ground System Architectures Workshop (GSAW), 2 March 2011

    Google Scholar 

  19. Guan, X., Wu, H., Li, L.: A parallel framework for processing massive spatial data with a SplitCandCMerge paradigm. Trans. GIS 16(6), 829–843 (2012)

    Article  Google Scholar 

  20. Thies, W., Karczmarek, M., Amarasinghe, S.: Streamit: a language for streaming applications. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

    Article  Google Scholar 

  22. Gao, B.C.: NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58(3), 257–266 (1996)

    Article  Google Scholar 

  23. Wang, Q.S., Zhao, D., Huang, Z.C.: Research on the performance of virtualization-based remote sensing data processing platform. In: 2012 International Conference on Systems and Informatics (ICSAI 2012), Yantai, China, 19–21 May 2012

    Google Scholar 

  24. McGrath, R.E., Xinjian, L., Folk, M.: Java (TM) applications using NCSA HDF files. Concurr. Prac. Exp. 9(11), 1113–1125 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenchun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, Z., Li, G. (2015). Exploiting Scalable Parallelism for Remote Sensing Analysis Models by Data Transformation Graph. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9530. Springer, Cham. https://doi.org/10.1007/978-3-319-27137-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27137-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27136-1

  • Online ISBN: 978-3-319-27137-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics