Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biped Walking Learning from Imitation Using Dynamic Movement Primitives

  • Conference paper
  • First Online:
Robot 2015: Second Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

Exploring the full potential of humanoid robots requires their ability to learn, generalize and reproduce complex tasks that will be faced in dynamic environments. In recent years, significant attention has been devoted to recovering kinematic information from the human motion using a motion capture system. This paper demonstrates the use of a VICON system to capture human locomotion that is used to train a set of Dynamic Movement Primitives. These DMP can then be used to directly control a humanoid robot on the task space. The main objectives of this paper are: (1) to study the main characteristics of human natural locomotion and human “robot-like” locomotion; (2) to use the captured motion to train a DMP; (3) to use the DMP to directly control a humanoid robot in task space. Numerical simulations performed on V-REP demonstrate the effectiveness of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Billard, A., Callinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics. Springer, New York (2008)

    Google Scholar 

  2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A Survey of Robot Learning from Demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)

    Article  Google Scholar 

  3. Dasgupta, A., Nakamura, Y.: Making feasible walking motion of humanoid robots from human motion capture data. In: IEEE International Conference on Robotics and Automation, pp. 1044–1049 (1999)

    Google Scholar 

  4. Elgammal, A., Lee, C.-S.: Tracking People on a Torus. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(3), 520–538 (2009)

    Article  Google Scholar 

  5. Inamura, T., Toshima, I., Tanie, H., Nakamura, Y.: Embodied Symbol Emergence Based on Mimesis Theory. International Journal of Robotics Research 23(4–5), 363–377 (2004)

    Article  Google Scholar 

  6. Kulic, D., Takano, J.W., Nakamura, Y.: I”ncremental Learning, Clustering and Hierarchy Formation of Whole Body Motion Patterns using Adaptive Hidden Markov Chains. International Journal of Robotics Research 27(7), 761–784 (2008)

    Article  Google Scholar 

  7. Shon, A.P., Grochow, K., Hertzmann, A., Rao, R.P.: Learning Shared Latent Structure for Image Synthesis and Robotic Imitation. In: Weiss, Y., Schlkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2005)

    Google Scholar 

  8. Rohmer, E., Singh, S., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326 (2013)

    Google Scholar 

  9. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)

    Article  Google Scholar 

  10. Billard, A., Callinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Handbook of robotics. Springer, New York (2008)

    Google Scholar 

  11. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences 358, 537–547 (2003)

    Article  Google Scholar 

  12. Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends in Cognitive Science 6(11), 481–487 (2002)

    Article  Google Scholar 

  13. Kober, J., Peters, J.,: Policy search for motor primitives in robotics. Machine Learning (2010)

    Google Scholar 

  14. Ijspeert, A., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 1398–1403 (2002)

    Google Scholar 

  15. Gams, A., Ijspeert, A.J., Schaal, S., Lenarcic, J.: On-line learning and modulation of periodic movements with nonlinear dynamical systems. Autonomous Robots 27(1), 3–23 (2009)

    Article  Google Scholar 

  16. Ijspeert, A., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computation 25, 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  18. Bitzer, S., Havoutis, I., Vijayakumar, S.: Synthesising Novel Movements through Space Modulation of Scalable Control Policies. From Animals to Animats. Springer (2008)

    Google Scholar 

  19. Umberger, B.R.: Stance and Swing Phase Costs in Human Walking. Journal of the Royal Society Interface 7(50), 1329–1340 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosado, J., Silva, F., Santos, V. (2016). Biped Walking Learning from Imitation Using Dynamic Movement Primitives. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics