Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Research of CMABC Algorithm in Intrusion Detection

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9532))

  • 1754 Accesses

Abstract

To the problem of the traditional parameters optimization algorithm may level into local optimal, a parameter optimization method crossover mutation artificial bee colony based on artificial bee colony algorithm is proposed to solve this problem and applied to intrusion detection. And introduced an improved artificial colony algorithm based on crossover mutation operator, the whole bee colony could be divided into two sub-populations according to the fitness value of colony and effectively avoid local optimum and enhance convergence speed, use standard test functions to verify the effectiveness of the algorithm. And the proposed algorithm’s performance is tested by the KDD-99 datasets, the experimental results show that this method can effective improve the classification performance of intrusion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahri, E., Harbi, N., Huu, H.N.: A multiple classifier system using an adaptive strategy for intrusion detection. In: International Conference on Intelligent Computational Systems (ICICS), pp. 124–128 (2012)

    Google Scholar 

  2. Mao, Y., Zhou, X.-b., Pi, D.-y., et al.: Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm. J. Zhe Jiang Univ. Sci. 6(10), 961–973 (2005)

    Article  Google Scholar 

  3. Kumar, A.: Parameter optimization using genetic algorithm for support vector machine-based price-forecasting model in National electricity Market. IET Gener. Transm. Distrib. IET 4(1), 36–49 (2010)

    Article  Google Scholar 

  4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department (2005)

    Google Scholar 

  5. Shi, X., Li, Y., Li, H., et al.: An integrated algorithm based on artificial bee colony and particle swarm optimization. In: Sixth International Conference on Natural Computation, ICNC, pp. 2586–2590 (2010)

    Google Scholar 

  6. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Unler, A., Murat, A., Chinnam, R.B.: mr 2 PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181(20), 4625–4641 (2011)

    Article  Google Scholar 

  8. KDD-99dataset for network-based intrusion detection systems. http://iscx.info/KDD-99

  9. Drucker, H., Wu, D., Vipnik, V.N.: Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10(5), 1048–1054 (1999)

    Article  Google Scholar 

  10. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)

    Article  Google Scholar 

  11. Karaboga, D., Basturk, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE Congress on Evolutionary Computation, pp. 1785–1791. IEEE (2005)

    Google Scholar 

  13. Tinoco, J.C.V., Coello, C.A.: hypDE: a hyper-heuristic based on differential evolution for solving constrained optimization problems. In: Schütze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation II. AISC, vol. 175, pp. 267–282. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Mezher, M.A., Abbod, M.F.: Genetic folding for solving multicast SVM problems. Applied Intelligence 41(2), 464–472 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the National Natural Science Foundation of China under Grant Nos. 61262072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, M., Yang, X., Huang, F., Fu, Y. (2015). Research of CMABC Algorithm in Intrusion Detection. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9532. Springer, Cham. https://doi.org/10.1007/978-3-319-27161-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27161-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27160-6

  • Online ISBN: 978-3-319-27161-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics