Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Texture-Based Method for Choroid Segmentation in Retinal EDI-OCT Images

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2015 (EUROCAST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9520))

Included in the following conference series:

  • 1659 Accesses

Abstract

Retinal layers can be identified by ophthalmologists using OCT images, which is useful for the diagnosis of different diseases. Recent EDI-OCT technique allows to explore the choroid layer, whose segmentation has become one of the hottest topics in the field of retinal imaging. In this sense, and taking into account that the choroid layer has different visual properties than the other retinal layers, a methodology based on textural information is presented in this paper to segment the choroid. From a retinal EDI-OCT image, a region of interest is detected and its low-level features are extracted, generating a feature vector that describes it, to finally segment the choroid. This paper includes several texture analysis methods to calculate the feature vectors. Results provided by the proposed methodology showed that the approach is adequate for the problem at hand, since it allows to segment the choroid layer with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bill, A., Sperber, G., Ujiie, K.: Physiology of the choroidal vascular bed. Int. Ophthalmol. 6(2), 101–107 (1983)

    Article  Google Scholar 

  2. Yin, Z.Q., Vaegan, T.J., Millar, T.J., Beaumont, P., Sarks, S.: Widespread choroidal insufficiency in primary open-angle glaucoma. J. Glaucoma 6(1), 23–32 (1997)

    Article  Google Scholar 

  3. Dhoot, D.S., Huo, S., Yuan, A., Xu, D., Srivistava, S., Ehlers, J., Traboulsi, E., Kaiser, P.K.: Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br. J. Ophthalmol. 97(1), 66–69 (2013)

    Article  Google Scholar 

  4. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  5. Yang, Q., Reisman, C.A., Chan, K., Ramachandran, R., Raza, A., Hood, D.C.: Automated segmentation of outer retinal layers in macular oct images of patients with retinitis pigmentosa. Biomed. Opt. Express 2(9), 2493–2503 (2011)

    Article  Google Scholar 

  6. Yazdanpanah, A., Hamarneh, G., Smith, B., Sarunic, M.: Intra-retinal layer segmentation in optical coherence tomography using an active contour approach. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 649–656. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Mishra, A., Wong, A., Bizheva, K., Clausi, D.A.: Intra-retinal layer segmentation in optical coherence tomography images. Opt. Express 17(26), 23719–23728 (2009)

    Article  Google Scholar 

  8. González-López, A., Ortega, M., Penedo, M.G., Charlón, P.: Automatic robust segmentation of retinal layers in oct images with refinement stages. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014, Part II. LNCS, vol. 8815, pp. 337–346. Springer, Heidelberg (2014)

    Google Scholar 

  9. González, A., Remeseiro, B., Ortega, M., Penedo, M.G.: Choroid characterization in EDI OCT retinal images based on texture analysis. In: 7th International Conference on Agents and Artificial Intelligence (ICAART 2015), vol. 2, pp. 269–276 (2015)

    Google Scholar 

  10. Gonzalez, R., Woods, R.: Digital Image Processing. Pearson/Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  11. Gabor, D.: Theory of Communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  12. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  13. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. Ser. B 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Çesmeli, E., Wang, D.: Texture segmentation using gaussian-markov random fields and neural oscillator networks. IEEE Trans. Neural Networks 12(2), 394–404 (2001)

    Article  Google Scholar 

  15. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  16. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 1–47 (1998)

    Article  Google Scholar 

  17. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  18. Rodriguez, J., Perez, A., Lozano, J.: Sensitivity analysis of k-fold cross-validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 569–575 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the Secretaría de Estado de Investigación of the Spanish Government and FEDER funds of the European Union through the research project PI14/02161, and by the Consellería de Cultura, Educación e Ordenación Universitaria of the Xunta de Galicia through the research project GPC2013/065. A. González-López acknowledges the support of the Spanish Government under the FPI Grant Program.

We would like to thank the Hospital do Barbanza, Ribeira (Spain) for providing us with the image dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Remeseiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

González-López, A., Remeseiro, B., Ortega, M., Penedo, M.G., Charlón, P. (2015). A Texture-Based Method for Choroid Segmentation in Retinal EDI-OCT Images. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27340-2_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27339-6

  • Online ISBN: 978-3-319-27340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics