Abstract
This paper addresses the automated analysis of coral in shallow reef environments up to 90 ft deep. During a series of robotic ocean deployments, we have collected a data set of coral and non-coral imagery from four distinct reef locations. The data has been annotated by an experienced biologist and presented as a representative challenge for visual understanding techniques. We describe baseline techniques using texture and color features combined with classifiers for two vision sub-tasks: live coral image classification and live coral semantic segmentation. The results of these methods demonstrate both the feasibility of the task as well as the remaining challenges that must be addressed through the development of more sophisticated techniques in the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Dataset hosted at: http://www.cim.mcgill.ca/mrl/data.html.
References
Spalding, M.D., Ravilious, C., Green, E.P.: United Nations Environment Programme, World Conservation Monitoring Centre. World Atlas of Coral Reefs. University of California Press, Berkeley (2001)
Millennium Ecosystem Assessment: Ecosystems and human well-being—Synthesis report. World Resources Institute. Washington, DC (2005)
Burke, L.M., Reytar, K., Spalding, M., Perry, A.: Reefs at risk revisited. World Resources Institute. Washington, DC (2011)
Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A., Hatziolos, M.E.: Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007)
Albins, M.A., Hixon, M.A., et al.: Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar. Ecol. Prog. Ser. 367, 233–238 (2008)
Bellwood, D.R., Hughes, T.P., Folke, C., Nystrom, M.: Confronting the coral reef crisis. Nature 429(6994), 827–833, 06 (2004)
Margules, C.R., Usher, M.B.: Criteria used in assessing wildlife conservation potential: a review. Biol. Conserv. 21(2), 79–109 (1981)
Eskesen, J., Owens, D., Soroka, M., Morash, J., Hover, F., Chryssostomidis, C., Morash, J., Hover, F.: Design and performance of Odyssey IV: A deep ocean hover-capable AUV, MIT, Technical Report MITSG 09–08 (2009)
Woolsey, M., Asper, V., Diercks, A., McLetchie, K.: Enhancing NIUST’s SeaBED class AUV, Mola Mola. In: Proceedings of Autonomous Underwater Vehicles, pp. 1–5 (2010)
Mohan, S., Thondiyath, A.: A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle. Int. J. Ocean Syst. Eng. 1(3), 120–135 (2011)
Font, D., Tresanchez, M., Siegentahler, C., Pallej, T., Teixid, M., Pradalier, C., Palacin, J.: Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle. Sensors 11(12), 11 168–11 187 (2011)
Meger, D., Shkurti, F., Cortes Poza, D., Giguere, P., Dudek, G.: 3d trajectory synthesis and control for a legged swimming robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2257–2264. IEEE (2014)
Meger, D., Higuera, J.C.G., Xu, A., Dudek, G.: Learning legged swimming gaits from experience. In: International Conference on Robotics and Autonomous Systems (ICRA) (2015)
Williams, S., Pizarro, O., Johnson-Roberson, M., Mahon, I., Webster, J., Beaman, R., Bridge, T.: Auv-assisted surveying of relic reef sites. In: OCEANS 2008, pp. 1–7, Sept 2008
Maki, T., Kume, A., Ura, T., Sakamaki, T., Suzuki, H.: Autonomous detection and volume determination of tubeworm colonies from underwater robotic surveys. In: OCEANS 2010 IEEE—Sydney, pp. 1–8, May 2010
Williams, S., Pizarro, O., Jakuba, M.V., Johnson, C.R., Barrett, N.S., Babcock, R.C., Kendrick, G.A., Steinberg, P.D., Heyward, A.J., Doherty, P., Mahon, I., Johnson-Roberson, M., Steinberg, D., Friedman, A.: Monitoring of benthic reference sites using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 19(1), 73–84 (2012)
Pizarro, O., Eustice, R.M., Singh, H.: Large area 3-D reconstructions from underwater optical surveys. IEEE J. Oceanic Eng. 34(2), 150–169 (2009)
Singh, H., Armstrong, R., Gilbes, F., Eustice, R., Roman, C., Pizarro, O., Torres, J.: Imaging Coral I: imaging coral habitats with the SeaBED AUV. Subsurf. Sens. Technol. Appl. 5(1), 25–42 (2004)
Giguere, P., Dudek, G., Prahacs, C., Plamondon, N., Turgeon, K.: Unsupervised learning of terrain appearance for automated coral reef exploration. In: Canadian Conference on Computer and Robot Vision, 2009. CRV ’09, pp. 268–275, May 2009
Spampinato, C., Palazzo, S., Boom, B., Fisher, R.B.: Overview of the lifeclef 2014 fish task. In: Working Notes for CLEF 2014 Conference, pp. 616–624, Sheffield, UK (2014). http://ceur-ws.org/Vol-1180/CLEF2014wn-Life-SpampinatoEt2014.pdf. Accessed 15–18 Sept 2014
Johnson-Roberson, M., Kumar, S., Willams, S.: Segmentation and classification of coral for oceanographic surveys: a semi-supervised machine learning approach. In: OCEANS 2006—Asia Pacific, pp. 1–6, May 2006
Girdhar, Y., Whitney, D., Dudek, G.: Curiosity based exploration for learning terrain models. In: IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 578–584. IEEE (2014)
Dudek, G., Jenkin, M., Prahacs, C., Hogue, A., Sattar, J., Giguere, P., German, A., Liu, H., Saunderson, S., Ripsman, A., Simhon, S., Torres-Mendez, L.A., Milios, E., Zhang, P., Rekleitis, I.: A visually guided swimming robot. In: Proceedings of Intelligent Robots and Systems, Edmonton, Alberta, Canada, Aug 2005
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge (2014)
Gabor, D.: Theory of communication. J. IEEE 93, 429–457 (1946)
Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113, (1989). http://dx.doi.org/10.1007/BF00204594
Meer, P., Jolion, J., Rosenfeld, A.: A fast parallel algorithm for blind estimation of noise variance. IEEE Trans. Pattern Anal. Mach. Intell. 12(2), 216–223 (1990)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Manderson, T., Li, J., Cortés Poza, D., Dudek, N., Meger, D., Dudek, G. (2016). Towards Autonomous Robotic Coral Reef Health Assessment. In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-27702-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27700-4
Online ISBN: 978-3-319-27702-8
eBook Packages: EngineeringEngineering (R0)