Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-Time Fuzzy Monitoring of Sitting Posture: Development of a New Prototype and a New Posture Classification Algorithm to Detect Postural Transitions

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Abstract

In a previous work, a chair prototype was used to detect 11 standardized siting postures of users, using just 8 air bladders (4 in the chair’s seat and 4 in the backrest) and one pressure sensor for each bladder. In this paper we describe the development of a new prototype, which is able to classify 12 standard postures with an overall score of 80.9 % (using a Neural Network Algorithm). We tested how this Algorithm worked during postural transitions (frontal and lateral flexion) and in intermediate postures, identifying some limitation of this Algorithm. This prompted the development of a Posture Classification Algorithm based on Fuzzy Logic and is able to determine if the user is adopting a good or a bad posture for specific time periods, using as input the Centre of Pressure, the Posture Adoption Time and the Posture Output from the existing Neural Network Algorithm. This newly developed Classification Algorithms is advancing the development of new Posture Correction Algorithms based on Fuzzy Actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Owen, N., Sugiyama, T., Eakin, E.E., Gardiner, Pa, Tremblay, M.S., Sallis, J.F.: Adults’ sedentary behavior determinants and interventions. Am. J. Prev. Med. 41, 189–196 (2011)

    Article  Google Scholar 

  2. Chau, J.Y., Ploeg, H.P.Van, Der, Uffelen, Van, J.G.Z., Wong, J., Riphagen, I., Healy, G.N., Gilson, N.D., Dunstan, D.W., Bauman, A.E., Owen, N., Brown, W.J.: Are workplace interventions to reduce sitting effective ? Sys. Rev. Prev. Med. (Baltim) 51, 352–356 (2010)

    Article  Google Scholar 

  3. Ramdan, N.S.A., Hashim, A.Y.B., Kamat, S.R., Mokhtar, M.N.A., Asmai, S.A.: On lower-back pain and its consequence to productivity. J. Ind. Intell. Inf. 2, 83–87 (2014)

    Google Scholar 

  4. Punnett, L., Wegman, D.H.: Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. J. Electromyogr. Kinesiol. 14, 13–23 (2004)

    Article  Google Scholar 

  5. Hartvigsen, J., Leboeuf-yde, C., Lings, S., Corder, E.H.: Is sitting-while-at-work associated with low back pain? A systematic, critical literature review. Scand. J. Public Health 28, 230–239 (2000)

    Google Scholar 

  6. Roffey, D.M., Wai, E.K., Bishop, P., Kwon, B.K., Dagenais, S.: Causal assessment of occupational sitting and low back pain: results of a systematic review. Spine J. 10, 252–261 (2010)

    Article  Google Scholar 

  7. Todd, A.I., Bennett, A.I., Christie., C.J.: Physical implications of prolonged sitting in a confined posture-a literature review. Ergon. SA J. Ergon. Soc. South Africa Spec. Ed. 19, 7–21 (2007)

    Google Scholar 

  8. Van Dieën, J.H., De Looze, M.P., Hermans, V.: Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics 44, 739–750 (2001)

    Article  Google Scholar 

  9. Cagnie, B., Danneels, L., Van Tiggelen, D., De Loose, V., Cambier, D.: Individual and work related risk factors for neck pain among office workers: a cross sectional study. Eur. Spine J. 16, 679–686 (2007)

    Article  Google Scholar 

  10. Ariëns, G.A., Bongers, P.M., Douwes, M., Miedema, M.C., Hoogendoorn, W.E., van der Wal, G., Bouter, L.M., van Mechelen, W.: Are neck flexion, neck rotation, and sitting at work risk factors for neck pain? Results of a prospective cohort study. Occup. Environ. Med. 58, 200–207 (2001)

    Article  Google Scholar 

  11. Juul-Kristensen, B., Søgaard, K., Strøyer, J., Jensen, C.: Computer users’ risk factors for developing shoulder, elbow and back symptoms. Scand. J. Work Environ. Health 30, 390–398 (2004)

    Article  Google Scholar 

  12. Adams, M., Hutton, W.: The effect of posture on diffusion into lumbar intervertebral discs. J. Anat. 147, 121–134 (1986)

    Google Scholar 

  13. Kingma, I., van Dieën, J.H., Nicolay, K., Maat, J.J., Weinans, H.: Monitoring water content in deforming intervertebral disc tissue by finite element analysis of MRI data. Magn. Reson. Med. 44, 650–654 (2000)

    Article  Google Scholar 

  14. O’Sullivan, K., O’Sullivan, P., O’Sullivan, L., Dankaerts, W.: What do physiotherapists consider to be the best sitting spinal posture? Man. Ther. 17, 432–437 (2012)

    Article  Google Scholar 

  15. Pynt, J., Higgs, J., Mackey, M.: Seeking the optimal posture of the seated lumbar spine. Physiother. Theory Pract. 17, 5–21 (2001)

    Article  Google Scholar 

  16. Lis, A.M., Black, K.M., Korn, H., Nordin, M.: Association between sitting and occupational LBP. Eur. Spine J. 16, 283–298 (2007)

    Article  Google Scholar 

  17. Ellegast, R.P., Kraft, K., Groenesteijn, L., Krause, F., Berger, H., Vink, P.: Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture. Appl. Ergon. 43, 296–307 (2012)

    Article  Google Scholar 

  18. Zhu, M., Mart, A.M., Tan, H.Z.: Template-based recognition of static sitting postures. In: Proceedings of The Workshop on Computer Vision and Pattern Recognition for Human Computer Interaction, held at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), pp. 1–6. IEEE Computer Society, Madison (2003)

    Google Scholar 

  19. Forlizzi, J., Disalvo, C., Zimmerman, J., Mutlu, B., Hurst, A.: The SenseChair : the lounge chair as an intelligent assistive device for elders. In: DUX 2005 Proceedings of the 2005 Conference on Designing for User eXperience, p. Article No. 31 (2005)

    Google Scholar 

  20. Tan, H.Z., Slivovsky, L.A., Member, S., Pentland, A.: A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatron. 6, 261–268 (2001)

    Article  Google Scholar 

  21. Zheng, Y., Morrell, J.: A vibrotactile feedback approach to posture guidance. In: IEEE Haptics Symposium, pp. 351–358 (2010)

    Google Scholar 

  22. Schrempf, A., Schossleitner, G., Minarik, T., Haller, M., Gross, S.: PostureCare - towards a novel system for posture monitoring and guidance. In: 18th World Congress of the International Federation of Automatic Control (IFAC), pp. 593–598 (2011)

    Google Scholar 

  23. Mutlu, B., Krause, A., Forlizzi, J., Guestrin, C., Hodgins, J.: Robust, low-cost, non-intrusive sensing and recognition of seated postures. In: UIST 2007 Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 149–158 (2007)

    Google Scholar 

  24. Daian, I., Ruiten, A.M. Van, Visser, A., Zubic, S.: Sensitive chair : a force sensing chair with multimodal real-time feedback via agent. In: ECCE 2007 Proceedings of the 14th European Conference on Cognitive Ergonomics: Invent! Explore!, pp. 163–166 (2007)

    Google Scholar 

  25. Griffiths, E., Saponas, T.S.: Health chair : implicitly sensing heart and respiratory rate. In: UbiComp 2014 Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 661–671 (2014)

    Google Scholar 

  26. Faudzi, A., Athif, M., Suzumori, K., Wakimoto, S.: Development of an intelligent chair tool system applying new intelligent pneumatic actuators. Adv. Robot. 24, 1503–1528 (2010)

    Article  Google Scholar 

  27. Goossens, R.H.M., Netten, M.P., van der Doelen, L.H.M.: An office chair to influence the sitting behavior of office workers 41, 2086–2088 (2012)

    Google Scholar 

  28. Palumbo, F., Ullberg, J., Stimec, A., Furfari, F., Karlsson, L., Coradeschi, S.: Sensor network infrastructure for a home care monitoring system. Sens. (Basel) 14, 3833–3860 (2014)

    Article  Google Scholar 

  29. Martins, L., Lucena, R., Almeida, R., Belo, J., Quaresma, C., Jesus, A., Vieira, P.: Intelligent chair sensor: classification and correction of sitting posture. Int. J. Syst. Dyn. Appl. 3, 65–80 (2014)

    Google Scholar 

  30. Vergara, M., Page, A.: System to measure the use of the backrest in sitting-posture office tasks. Appl. Ergon. 31, 247–254 (2000)

    Article  Google Scholar 

  31. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: a review of applications. Expert Syst. Appl. 36, 2–17 (2009)

    Article  Google Scholar 

  32. Kar, S., Das, S., Ghosh, P.K.: Applications of neuro fuzzy systems: A brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)

    Article  Google Scholar 

  33. International Organization for Standardization: Ergonomics—Evaluation of static working postures (2000)

    Google Scholar 

  34. Fleiss, J.L.: Reliability of measurement. In: The Design and Analysis of Clinical Experiments, pp. 1–32 (1986)

    Google Scholar 

  35. Hobson, D.A.: Comparative effects of posture on pressure and shear at the body-seat interface. J. Rehabil. Res. Dev. 29, 21 (1992)

    Article  Google Scholar 

  36. James, F.: Statistical Methods in Experimental Physics. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  37. Mamdani, E.H.: Control & science application of fuzzy algorithms for control of simple dynamic plant. Electr. Eng. Proc. Inst. 121, 1585–1588 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

This project (QREN 13330 – SYPEC) is supported by FEDER, QREN – Quadro de Referência Estratégico Nacional, Portugal 07/13 and PORLisboa – Programa Operacional Regional de Lisboa. The authors wish to thank Eng. Pedro Duque, Eng. Rui Lucena, Eng. João Belo and Eng. Marcelo Santos for the help provided in the construction of the first prototype.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martins, L. et al. (2015). Real-Time Fuzzy Monitoring of Sitting Posture: Development of a New Prototype and a New Posture Classification Algorithm to Detect Postural Transitions. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics