Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Version 2: LASSO MPC with Stabilising Terminal Cost

  • Chapter
  • First Online:
Lasso-MPC – Predictive Control with ℓ1-Regularised Least Squares

Part of the book series: Springer Theses ((Springer Theses))

  • 1009 Accesses

Abstract

This chapter presents a modified version of \(\ell _{asso}\)-MPC that guarantees closed-loop asymptotic stability for arbitrary 1-norm input penalties. The approach is based on a new terminal cost and terminal constraint. Appropriate scalings are computed to adjust the proposed former according to the stage cost matrices. In particular, two strategies are presented to compute the required ingredients. The first one makes use of norm inequalities and linear matrix inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under this assumption, it can be easily shown that problems (3.2.1) and (3.2.2) are still an \(\ell _1\)-regularised LS problem.

References

  • Alessio A, Bemporad A (2009) A survey on explicit model predictive control. Nonlinear model predictive control: lecture notes in control and information sciences, vol 38, pp 345–369

    Google Scholar 

  • Blanchini F (1994) Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions. IEEE Trans Autom Control 39:428–433

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchini F, Miani S (2003) Stabilisation of LPV systems: state feedback, state estimation and duality. In: Proceedings of the conference on decision and control (CDC)

    Google Scholar 

  • Blanchini F, Miani S (2008) Set-theoretic methods in control. Birkhäuser, Boston

    MATH  Google Scholar 

  • Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM

    Google Scholar 

  • Cannon M, Deshmukh V, Kouvaritakis B (2003) Nonlinear model predictive control with polytopic invariant sets. Automatica 39:1487–1494

    Article  MathSciNet  MATH  Google Scholar 

  • Fiacchini M, Alamo T, Camacho EF (2012) Invariant sets computation for convex difference inclusions systems. Syst Control Lett 8:819–826

    Article  MathSciNet  MATH  Google Scholar 

  • Gallieri M, Maciejowski JM (2012) \(\ell _{asso}\) MPC: smart regulation of overactuated systems. In: Proceedings of the American control conference (ACC), pp 1217–1222

    Google Scholar 

  • Gallieri M, Maciejowski J (2013a) Soft-constrained Lasso-MPC for robust LTI tracking: enlarged feasible region and an ISS gain estimate. In: Proceedings of the conference on decision and control (CDC), pp 7101–7106

    Google Scholar 

  • Gallieri M, Maciejowski JM (2013b) Stabilising terminal cost and terminal controller for \(\ell _{asso}\)-MPC: enhanced optimality and region of attraction. In: Proceedings of the European control conference (ECC), pp 524–529

    Google Scholar 

  • Grammatico S, Pannocchia G (2013) Achieving a large domain of attraction with short-horizon linear MPC via polyhedral Lyapunov functions. In: Proceedings of the European control conference (ECC), pp 1059–1064

    Google Scholar 

  • Horn RA, Johnson CR (2010) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kerrigan E (2000) Robust constraint satisfaction: invariant sets and predictive control. PhD thesis, University of Cambridge - St. John’s college

    Google Scholar 

  • Kim SJ, Lusting M, Stephen Boyd, Gorinevsky D (2007b) An interior-point method for large-scale \(\ell _1\)-regularised least squares. J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  • Kothare Mayuresh V, Venkataramanan Balakrishnan, Manfred Morari (1996) Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10):1361–1379

    Article  MathSciNet  MATH  Google Scholar 

  • Lazar M (2010) On infinity norms as Lyapunov functions: alternative necessary and sufficient conditions. In: Proceedings of the Conference on decision and control (CDC), pp 5936–5942

    Google Scholar 

  • Lazar M, Jokic A (2010) On infinity norms as Lyapunov functions for piecewise affine systems. In: Proceedings of the hybrid systems computation and control conference, pp 131–141

    Google Scholar 

  • Lazar M, Heemels WPMH, Weiland S, Bemporad A (2006) Stabilizing model predictive control of hybrid systems. IEEE Trans Autom Control 51(11):1813–1818

    Article  MathSciNet  Google Scholar 

  • Limon D, Alamo T, Camacho Eduardo F (2005) Enlarging the domain of attraction of MPC controllers. Automatica 41(4):629–635

    Article  MathSciNet  MATH  Google Scholar 

  • Raković S, Lazar M (2012) Minkowski terminal cost functions for MPC. Automatica 48(10):2721–2725

    Article  MathSciNet  MATH  Google Scholar 

  • Rawlings JB, Mayne DQ (2009) Model predictive control theory and design. Nob Hill Pub Llc, Madison

    Google Scholar 

  • Sptvold J, Tndel P, Johansen TA (2007) Continuous selection and unique polyhedral representation of solutions to convex parametric quadratic programs. J Optim Theory Appl 134(2):177–189

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gallieri .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallieri, M. (2016). Version 2: LASSO MPC with Stabilising Terminal Cost. In: Lasso-MPC – Predictive Control with ℓ1-Regularised Least Squares. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-27963-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27963-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27961-9

  • Online ISBN: 978-3-319-27963-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics