Abstract
In this paper we study heavy-weighted automata, a generalization of weighted automata in which the weights of the transitions can be formal power series. As for ordinary weighted automata, the behaviour of heavy-weighted automata is expressed in terms of formal power series. We propose several equivalent definitions for their semantics, including a system of behavioural differential equations (following the approach of coinductive calculus), or an embedding into a coalgebra for the functor \(S\,\times \,(-)^A\), for which the set of formal power series is a final coalgebra. Using techniques based on bisimulations and coinductive calculus, we study how ordinary weighted automata can be transformed into more compact heavy-weighted ones.
Similar content being viewed by others
References
Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalgebraic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)
Bonsangue, M.M., Rutten, J., Winter, J.: Defining context-free power series coalgebraically. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 20–39. Springer, Heidelberg (2012)
Brzozowski, J., Mccluskey, E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comput. 12(2), 67–76 (1963)
Castro, R.D., Ramírez, A., Ramírez, J.L.: Applications in enumerative combinatorics of infinite weighted automata and graphs. Sci. Annal. Comput. Sci. 24(1), 137–171 (2014)
Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Monographs in Theoretical Computer Science. An EATCS Series, 1st edn. Springer, Heidelberg (2009)
Fortin, M., Bonsangue, M.M., Rutten, J.J.M.M.: Coalgebraic semantics of heavy-weighted automata. Technical report FM-1405, CWI - Amsterdam (2014). http://oai.cwi.nl/oai/asset/22603/22603D.pdf
Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata [5]. Monographs in Theoretical Computer Science. An EATCS Series, pp. 257–289. Springer, Heidelberg (2009)
Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)
Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theoret. Comput. Sci. 308(1–3), 1–53 (2003)
Rutten, J.J.M.M.: Coinductive counting with weighted automata. J. Automata Lang. Comb. 8(2), 319–352 (2003)
Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Struct. Comput. Sci. 15(1), 93–147 (2005)
Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)
Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9(1) (2013)
Wood, D.: Theory of Computation. Harper & Row, New York (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Fortin, M., Bonsangue, M.M., Rutten, J. (2015). Coalgebraic Semantics of Heavy-Weighted Automata. In: Codescu, M., Diaconescu, R., Țuțu, I. (eds) Recent Trends in Algebraic Development Techniques. WADT 2015. Lecture Notes in Computer Science(), vol 9463. Springer, Cham. https://doi.org/10.1007/978-3-319-28114-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-28114-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28113-1
Online ISBN: 978-3-319-28114-8
eBook Packages: Computer ScienceComputer Science (R0)