Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Coalgebraic Semantics of Heavy-Weighted Automata

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9463))

Included in the following conference series:

  • 341 Accesses

Abstract

In this paper we study heavy-weighted automata, a generalization of weighted automata in which the weights of the transitions can be formal power series. As for ordinary weighted automata, the behaviour of heavy-weighted automata is expressed in terms of formal power series. We propose several equivalent definitions for their semantics, including a system of behavioural differential equations (following the approach of coinductive calculus), or an embedding into a coalgebra for the functor \(S\,\times \,(-)^A\), for which the set of formal power series is a final coalgebra. Using techniques based on bisimulations and coinductive calculus, we study how ordinary weighted automata can be transformed into more compact heavy-weighted ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalgebraic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bonsangue, M.M., Rutten, J., Winter, J.: Defining context-free power series coalgebraically. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 20–39. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Brzozowski, J., Mccluskey, E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comput. 12(2), 67–76 (1963)

    Article  Google Scholar 

  4. Castro, R.D., Ramírez, A., Ramírez, J.L.: Applications in enumerative combinatorics of infinite weighted automata and graphs. Sci. Annal. Comput. Sci. 24(1), 137–171 (2014)

    MathSciNet  Google Scholar 

  5. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Monographs in Theoretical Computer Science. An EATCS Series, 1st edn. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  6. Fortin, M., Bonsangue, M.M., Rutten, J.J.M.M.: Coalgebraic semantics of heavy-weighted automata. Technical report FM-1405, CWI - Amsterdam (2014). http://oai.cwi.nl/oai/asset/22603/22603D.pdf

  7. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata [5]. Monographs in Theoretical Computer Science. An EATCS Series, pp. 257–289. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theoret. Comput. Sci. 308(1–3), 1–53 (2003)

    Article  MathSciNet  Google Scholar 

  10. Rutten, J.J.M.M.: Coinductive counting with weighted automata. J. Automata Lang. Comb. 8(2), 319–352 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Struct. Comput. Sci. 15(1), 93–147 (2005)

    Article  MathSciNet  Google Scholar 

  12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  13. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9(1) (2013)

    Google Scholar 

  14. Wood, D.: Theory of Computation. Harper & Row, New York (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello M. Bonsangue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fortin, M., Bonsangue, M.M., Rutten, J. (2015). Coalgebraic Semantics of Heavy-Weighted Automata. In: Codescu, M., Diaconescu, R., Țuțu, I. (eds) Recent Trends in Algebraic Development Techniques. WADT 2015. Lecture Notes in Computer Science(), vol 9463. Springer, Cham. https://doi.org/10.1007/978-3-319-28114-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28114-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28113-1

  • Online ISBN: 978-3-319-28114-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics