Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TADOOP: Mining Network Traffic Anomalies with Hadoop

  • Conference paper
Security and Privacy in Communication Networks (SecureComm 2015)

Abstract

Today, various anomalies and large number of flows in a network make traffic anomaly detection a big challenge. In this paper, we propose DTE-FP (Dual q Tsallis Entropy for flow Feature with Properties), a more efficient method for traffic anomaly detection. To handle huge amount of traffic, based on Hadoop, we implement a network traffic anomaly detection system named TADOOP, which supports semi-automatic training and both offline and online traffic anomaly detection. TADOOP with a cluster of five servers has been deployed in Tsinghua University Campus Network. Furthermore, we compare DTE-FP with Tsallis entropy, and the experimental results show that DTE-FP has much better detection capability than Tsallis entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. In: Proceedings of the 2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM 2005), pp. 217–228. ACM, New York (2005)

    Google Scholar 

  2. Gu, Y., McCallum, A., Towsley, D.: Detecting anomalies in network traffic using maximum entropy estimation. In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement, IMC 2005, pp. 32–32. USENIX Association, Berkeley (2005)

    Google Scholar 

  3. Nychis, G., Sekar, V., Andersen, D.G., Kim, H., Zhang, H.: An empirical evaluation of entropy-based traffic anomaly detection. In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, pp. 151–156. ACM (2008)

    Google Scholar 

  4. Tellenbach, B., Burkhart, M., Sornette, D., Maillart, T.: Beyond shannon: characterizing internet traffic with generalized entropy metrics. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 239–248. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bereziński, P., Szpyrka, M., Jasiul, B., Mazur, M.: Network anomaly detection using parameterized entropy. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 465–478. Springer, Heidelberg (2014)

    Google Scholar 

  6. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  7. Apache hadoop (2014). http://hadoop.apache.org

  8. Lee, Y., Lee, Y.: Toward scalable internet traffic measurement and analysis with hadoop. SIGCOMM Comput. Commun. Rev. 43(1), 5–13 (2013)

    Article  Google Scholar 

  9. Zhang, L., Wang, J., Lin, S.: Design of the network traffic anomaly detection system in cloud computing environment. In: 2012 International Symposium on Information Science and Engineering (ISISE), pp. 16–19. IEEE (2012)

    Google Scholar 

  10. Hodge, V.J., Jackson, T., Austin, J.: A hadoop-based framework for parallel and distributed feature selection (2013)

    Google Scholar 

  11. Bhuyan, M., Bhattacharyya, D., Kalita, J.: Network anomaly detection: Methods, systems and tools. IEEE Communications Surveys Tutorials 16(1), 303–336 (2014)

    Article  Google Scholar 

  12. Fontugne, R., Mazel, J., Fukuda, K.: Hashdoop: a mapreduce framework for network anomaly detection. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 494–499, April 2014

    Google Scholar 

  13. Ziviani, A., Gomes, A.T.A., Monsores, M., Rodrigues, P.: Network anomaly detection using nonextensive entropy. IEEE Communications Letters 11(12), 1034–1036 (2007)

    Article  Google Scholar 

  14. Wang, Z., Yang, J., Li, F.: An on-line anomaly detection method based on a new stationary metric-entropy-ratio. In: 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 90–97. IEEE (2014)

    Google Scholar 

  15. Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. Journal of Statistical Physics 52(1–2), 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tsallis, C.: Nonextensive statistics: theoretical, experimental and computational evidences and connections. Brazilian Journal of Physics 29(1), 1–35 (1999)

    Article  Google Scholar 

  17. Tsallis, C.: Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons & Fractals 13(3), 371–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. IPFIX library (2014). http://libipfix.sourceforge.net/

  19. Tian, G., Wang, Z., Yin, X., Li, Z., Shi, X., Lu, Z., Zhou, C., Yu, Y., Guo, Y.: Mining network traffic anomaly based on adjustable piecewise entropy. In: IEEE/ACM International Symposium on Quality of Service (IWQoS), June 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Tian, G. et al. (2015). TADOOP: Mining Network Traffic Anomalies with Hadoop. In: Thuraisingham, B., Wang, X., Yegneswaran, V. (eds) Security and Privacy in Communication Networks. SecureComm 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-28865-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28865-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28864-2

  • Online ISBN: 978-3-319-28865-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics