Abstract
We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wyeth, G., Milford, M.: Spatial cognition for robots: robot navigation from biological inspiration. IEEE Robot. Autom. Mag. 16, 24–32 (2009)
Milford, M.J.: Robot Navigation from Nature: Simultaneous Localisation, Mapping, and Path Planning Based on Hippocampal Models, vol. 41. Springer, Berlin (2008)
Milford, M.J., Wyeth, G., Prasser, D.: RatSLAM: a hippocampal model for simultaneous localization and mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 403–408. New Orleans, USA (2004)
Milford, M., Wyeth, G.: Mapping a suburb with a single camera using a biologically inspired SLAM system. IEEE Trans. Robot. 24, 1038–1053 (2008)
Milford, M., Wyeth, G.: Single camera vision-only SLAM on a suburban road network. In: Proceedings of the International Conference on Robotics and Automation, Pasadena, United States (2008)
Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired SLAM system. Int. J. Robot. Res. 29, 1131–1153 (2010)
Ball, D., Heath, S., Wiles, J., Wyeth, G., Corke, P., Milford, M.: OpenRatSLAM: an open source brain-based SLAM system. Auton. Robots, 1–28 (2013)
Milford, M., Wiles, J., Wyeth, G.: Solving navigational uncertainty using grid cells on robots. PLoS Comput. Biol. 6(11), e1000995 (2010)
Milford, M., Turner, I., Corke, P.: Long exposure localization in darkness using consumer cameras. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)
Milford, M.: Vision-based place recognition: how low can you go? Int. J. Robot. Res. 32, 766–789 (2013)
Milford, M., Wyeth, G.: SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: Proceedings of the IEEE International Conference on Robotics and Automation, St Paul, United States (2012)
Milford, M.: Visual route recognition with a handful of bits. In: Robotics: Science and Systems VIII. Australia, Sydney (2012)
Milford, M., Vig, E., Scheirer, W., Cox, D.: Towards condition-invariant, top-down visual place recognition. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia (2013)
Chen, Z., Jacobson, A., Erdem, U.M., Hasselmo, M.E., Milford, M.: Towards bio-inspired place recognition over multiple spatial scales. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia (2013)
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 11, 801–806 (2005)
Golani, I., Bronchti, G., Moualem, D., Teitelbaum, P.: “Warm-up" along dimensions of movement in the ontogeny of exploration in rats and other infant mammals. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 78, pp. 7226–7229 (1981)
Stratton, P., Milford, M., Wyeth, G., Wiles, J.: Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots. PLoS One 6(10), e25687 (2011)
Cheung, A., Ball, D., Milford, M., Wyeth, G., Wiles, J.: Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration. PLoS Comput. Biol. 8(8), e1002651 (2012)
Thomson, E.E., Carra, R., Nicolelis, M.A.: Perceiving invisible light through a somatosensory cortical prosthesis. Nat. Commun. 4, 1482 (2013)
Jacobson, A., Chen, Z., Milford, M.: Autonomous movement-driven place recognition calibration for generic multi-sensor robot platforms. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan (2013)
Milford, M., Jacobson, A.: Brain-based sensor fusion for navigating robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (2013)
Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An atlas framework for scalable mapping. In: Proceedings of the International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1899–1906 (2003)
Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., Savelli, F.: Local metrical and global topological maps in the hybrid spatial semantic hierarchy. In: Proceedings of the International Conference on Robotics and Automation, New Orleans, USA (2004)
Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot. Auton. Syst. 8, 47–63 (1991)
Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser, M., Moser, E.: The entorhinal grid map is discretized. Nature 492, 72–78 (2012)
Burak, Y., Fiete, I.R.: Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5(2), e1000291 (2009)
Welinder, P.E., Burak, Y., Fiete, I.R.: Grid cells: the position code, neural network models of activity, and the problem of learning. Hippocampus 18, 1283–1300 (2008)
Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)
Vapnik, V.: The support vector method of function estimation. Nonlinear Modeling. Kluwer, Boston (1998)
Jacobson, A., Milford, M.: Towards brain-based sensor fusion for navigating robots. In: Proceedings of the Australasian Conference on Robotics and Automation (2012)
Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.-B.: Spatial representation in the entorhinal cortex. Science 27, 1258–1264 (2004)
Acknowledgments
This work was supported by an Australian Research Council Discovery Project DP120102775 and Microsoft Research Faculty Fellowship to MM, and an ARC & NHMRC Thinking Systems grant TS0669699 to GW.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Milford, M., Jacobson, A., Chen, Z., Wyeth, G. (2016). RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-28872-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28870-3
Online ISBN: 978-3-319-28872-7
eBook Packages: EngineeringEngineering (R0)