Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wyeth, G., Milford, M.: Spatial cognition for robots: robot navigation from biological inspiration. IEEE Robot. Autom. Mag. 16, 24–32 (2009)

    Article  Google Scholar 

  2. Milford, M.J.: Robot Navigation from Nature: Simultaneous Localisation, Mapping, and Path Planning Based on Hippocampal Models, vol. 41. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Milford, M.J., Wyeth, G., Prasser, D.: RatSLAM: a hippocampal model for simultaneous localization and mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 403–408. New Orleans, USA (2004)

    Google Scholar 

  4. Milford, M., Wyeth, G.: Mapping a suburb with a single camera using a biologically inspired SLAM system. IEEE Trans. Robot. 24, 1038–1053 (2008)

    Article  Google Scholar 

  5. Milford, M., Wyeth, G.: Single camera vision-only SLAM on a suburban road network. In: Proceedings of the International Conference on Robotics and Automation, Pasadena, United States (2008)

    Google Scholar 

  6. Milford, M., Wyeth, G.: Persistent navigation and mapping using a biologically inspired SLAM system. Int. J. Robot. Res. 29, 1131–1153 (2010)

    Article  Google Scholar 

  7. Ball, D., Heath, S., Wiles, J., Wyeth, G., Corke, P., Milford, M.: OpenRatSLAM: an open source brain-based SLAM system. Auton. Robots, 1–28 (2013)

    Google Scholar 

  8. Milford, M., Wiles, J., Wyeth, G.: Solving navigational uncertainty using grid cells on robots. PLoS Comput. Biol. 6(11), e1000995 (2010)

    Article  MathSciNet  Google Scholar 

  9. Milford, M., Turner, I., Corke, P.: Long exposure localization in darkness using consumer cameras. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  10. Milford, M.: Vision-based place recognition: how low can you go? Int. J. Robot. Res. 32, 766–789 (2013)

    Article  Google Scholar 

  11. Milford, M., Wyeth, G.: SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: Proceedings of the IEEE International Conference on Robotics and Automation, St Paul, United States (2012)

    Google Scholar 

  12. Milford, M.: Visual route recognition with a handful of bits. In: Robotics: Science and Systems VIII. Australia, Sydney (2012)

    Google Scholar 

  13. Milford, M., Vig, E., Scheirer, W., Cox, D.: Towards condition-invariant, top-down visual place recognition. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia (2013)

    Google Scholar 

  14. Chen, Z., Jacobson, A., Erdem, U.M., Hasselmo, M.E., Milford, M.: Towards bio-inspired place recognition over multiple spatial scales. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia (2013)

    Google Scholar 

  15. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 11, 801–806 (2005)

    Article  Google Scholar 

  16. Golani, I., Bronchti, G., Moualem, D., Teitelbaum, P.: “Warm-up" along dimensions of movement in the ontogeny of exploration in rats and other infant mammals. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 78, pp. 7226–7229 (1981)

    Google Scholar 

  17. Stratton, P., Milford, M., Wyeth, G., Wiles, J.: Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots. PLoS One 6(10), e25687 (2011)

    Article  Google Scholar 

  18. Cheung, A., Ball, D., Milford, M., Wyeth, G., Wiles, J.: Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration. PLoS Comput. Biol. 8(8), e1002651 (2012)

    Article  Google Scholar 

  19. Thomson, E.E., Carra, R., Nicolelis, M.A.: Perceiving invisible light through a somatosensory cortical prosthesis. Nat. Commun. 4, 1482 (2013)

    Article  Google Scholar 

  20. Jacobson, A., Chen, Z., Milford, M.: Autonomous movement-driven place recognition calibration for generic multi-sensor robot platforms. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan (2013)

    Google Scholar 

  21. Milford, M., Jacobson, A.: Brain-based sensor fusion for navigating robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (2013)

    Google Scholar 

  22. Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An atlas framework for scalable mapping. In: Proceedings of the International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1899–1906 (2003)

    Google Scholar 

  23. Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., Savelli, F.: Local metrical and global topological maps in the hybrid spatial semantic hierarchy. In: Proceedings of the International Conference on Robotics and Automation, New Orleans, USA (2004)

    Google Scholar 

  24. Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot. Auton. Syst. 8, 47–63 (1991)

    Article  Google Scholar 

  25. Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser, M., Moser, E.: The entorhinal grid map is discretized. Nature 492, 72–78 (2012)

    Article  Google Scholar 

  26. Burak, Y., Fiete, I.R.: Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5(2), e1000291 (2009)

    Article  MathSciNet  Google Scholar 

  27. Welinder, P.E., Burak, Y., Fiete, I.R.: Grid cells: the position code, neural network models of activity, and the problem of learning. Hippocampus 18, 1283–1300 (2008)

    Article  Google Scholar 

  28. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  29. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)

    Article  MATH  Google Scholar 

  30. Vapnik, V.: The support vector method of function estimation. Nonlinear Modeling. Kluwer, Boston (1998)

    Google Scholar 

  31. Jacobson, A., Milford, M.: Towards brain-based sensor fusion for navigating robots. In: Proceedings of the Australasian Conference on Robotics and Automation (2012)

    Google Scholar 

  32. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.-B.: Spatial representation in the entorhinal cortex. Science 27, 1258–1264 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an Australian Research Council Discovery Project DP120102775 and Microsoft Research Faculty Fellowship to MM, and an ARC & NHMRC Thinking Systems grant TS0669699 to GW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Milford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Milford, M., Jacobson, A., Chen, Z., Wyeth, G. (2016). RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics