Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MedC: A Literature Analysis System for Chinese Medicine Research

  • Conference paper
  • First Online:
Smart Health (ICSH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9545))

Included in the following conference series:

Abstract

Chinese medicine research documents a significant amount of knowledge. However, compared to Western medicine, there are limited studies that take advantage of and summarize findings based on the Chinese medicine literature. This paper builds a literature analysis system based on information extraction and visualization technologies, which allow users to select and analyze a subset of Chinese medicine literature. The system provides complex search functionalities and makes a set of analyses (summary statistics on medicine/disease/acupuncture points, medicine co-occurrence analysis, and acupuncture point analysis) available to support Chinese medicine scholars and alleviate their workload. The system may facilitate Chinese medicine research and theorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/JavaServer_Faces.

  2. 2.

    http://primefaces.org/.

  3. 3.

    http://getbootstrap.com/.

  4. 4.

    https://jquery.com/.

  5. 5.

    http://d3js.org/.

References

  1. Chen, H., Fuller, S., Friedman, C., Hersh, W.: Medical Informatics: Knowledge Management and Data Mining in Biomedicine. Springer, Heidelberg (2005)

    Book  Google Scholar 

  2. Leroy, G., Chen, H.C.: Genescene: an ontology-enhanced integration of linguistic and co-occurrence based relations in biomedical texts. J. Am. Soc. Inf. Sci. Technol. 56, 457–468 (2005)

    Article  Google Scholar 

  3. Houston, A.L., Chen, H.C., Hubbard, S.M., Schatz, B.R., Ng, T.D., Sewell, R.R., Tolle, K.M.: Medical data mining on the internet: research on a cancer information system. Artif. Intell. Rev. 13, 437–466 (1999)

    Article  Google Scholar 

  4. Wei, C.H., Harris, B.R., Kao, H.Y., Lu, Z.Y.: tmVar: a text mining approach for extracting sequence variants in biomedical literature. Bioinformatics 29, 1433–1439 (2013)

    Article  Google Scholar 

  5. Savova, G.K., Masanz, J.J., Ogren, P.V., Zheng, J.P., Sohn, S., Kipper-Schuler, K.C., Chute, C.G.: Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 17, 507–513 (2010)

    Article  Google Scholar 

  6. Wong, A., Shatkay, H.: Protein function prediction using text-based features extracted from the biomedical literature: the CAFA challenge. BMC Bioinform. 14, S14 (2013)

    Google Scholar 

  7. Li, J.X., Zhang, Z., Li, X., Chen, H.: Kernel-based learning for biomedical relation extraction. J. Am. Soc. Inf. Sci. Technol. 59, 756–769 (2008)

    Article  Google Scholar 

  8. Li, X., Chen, H.C., Li, J.X., Zhang, Z.: Gene function prediction with gene interaction networks: a context graph kernel approach. IEEE Trans. Inf. Technol. Biomed. 14, 119–128 (2010)

    Article  Google Scholar 

  9. Zhou, X.Z., Peng, Y.H., Liu, B.Y.: Text mining for traditional Chinese medical knowledge discovery: a survey. J. Biomed. Inform. 43, 650–660 (2010)

    Article  Google Scholar 

  10. Zhou, X.Z., Liu, B.Y., Wu, Z.H., Feng, Y.: Integrative mining of traditional Chinese medicine literature and medline for functional gene networks. Artif. Intell. Med. 41, 87–104 (2007)

    Article  Google Scholar 

  11. Zheng, G., Jiang, M., He, X.J., Zhao, J., Guo, H.T., Chen, G., Zha, Q.L., Lu, A.P.: Discrete derivative: a data slicing algorithm for exploration of sharing biological networks between rheumatoid arthritis and coronary heart disease. Biodata Min. 4, 18 (2011)

    Article  Google Scholar 

  12. Fang, Y.C., Huang, H.C., Chen, H.H., Juan, H.F.: TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining. BMC Complement. Altern. Med. 8, 58 (2008)

    Article  Google Scholar 

  13. Xue, R.C., Fang, Z., Zhang, M.X., Yi, Z.H., Wen, C.P., Shi, T.L.: TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 41, D1089–D1095 (2013)

    Article  Google Scholar 

  14. Zhang, Z.H., Guo, H.T., Zheng, G., Feng, F.H., Li, S.W.: Exploration drug characteristics of Sjogren’s syndrome using text mining. Tradit. Chin. Med. Res. 26, 72–74 (2013)

    Google Scholar 

  15. Zha, Q.-l., Yu, J.-Y., Yu, F., Zheng, G., Guo, H.-T., Lv, A.-P., Yu, Z., Jiang, M.: Biological characteristic of five flavours categorized Chinese herbs used for cough treatment based on metabolism related mesh text mining. Chin. J. Basic Med. Tradit. Chin. Med., 616–618 (2010)

    Google Scholar 

  16. Liu, T., Liu, J.C.Z.T., X.F., Liu, X.S., Zhang, W.D.: Based on TCM inher-itance assist system to analyze the mdication experience of Liu Yun-Shan for treating Diarrhea in children. Clin. J. Chin. Med. 5, 10–13 (2013)

    Google Scholar 

  17. Tan, Y., Yang, J., Zhao, N., Zheng, G., Cai, F., Jiang, C.Y., Guo, H.T., Jiang, M., Lv, A.P.: Regularity of Chinese and western medicine application for chronic hepatitis b with text mining technique. Chin. J. Exp.Tradit. Med. Formulae 17, 232–235 (2011)

    Google Scholar 

  18. Zhou, C.Y., Chen, H.J., Tao, J.H.: Graph: a domain ontology-driven semantic graph auto extraction system. Appl. Math. Inform. Sci. 5, 9–16 (2011)

    Google Scholar 

Download references

Acknowledgements

The research is partially supported by National Natural Science Foundation of China grant 71572169, GuangDong Natural Science Foundation grant 2015A030313876, and CityU SRG 7004287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, X., Tong, Y., Wang, W. (2016). MedC: A Literature Analysis System for Chinese Medicine Research. In: Zheng, X., Zeng, D., Chen, H., Leischow, S. (eds) Smart Health. ICSH 2015. Lecture Notes in Computer Science(), vol 9545. Springer, Cham. https://doi.org/10.1007/978-3-319-29175-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29175-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29174-1

  • Online ISBN: 978-3-319-29175-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics