Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novel Methods for Estimating Surface Normals from Affine Transformations

  • Conference paper
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2015)

Abstract

The aim of this paper is to describe different estimation techniques in order to deal with point-wise surface normal estimation from calibrated stereo configuration. We show here that the knowledge of the affine transformation between two projections is sufficient for computing the normal vector unequivocally. The formula which describes the relationship among the cameras, normal vectors and affine transformations is general, since it works for every kind of cameras, not only for the pin-hole one. However, as it is proved in this study, the normal estimation can optimally be solved for the perspective camera. Other non-optimal solutions are also proposed for the problem. The methods are tested both on synthesized data and real-world images. The source codes of the discussed algorithms are available on the web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://web.eee.sztaki.hu/home4/node/53.

  2. 2.

    www.octave.org.

  3. 3.

    http://www.robots.ox.ac.uk/~vgg/data/.

  4. 4.

    http://cvlabwww.epfl.ch/data/multiview/denseMVS.html.

  5. 5.

    www.meshlab.org.

  6. 6.

    http://web.eee.sztaki.hu/home4/node/53.

References

  1. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  3. Faugeras, O., Lustman, F.: Motion and structure from motion in a piecewise planar environment. Technical Report RR-0856, INRIA (1988)

    Google Scholar 

  4. Fischler, M., Bolles, R.: Random Sampling Consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 358–367 (1981)

    MathSciNet  Google Scholar 

  5. Fodor, B., Kazó, C., Zsolt, J., Hajder, L.: Normal map recovery using bundle adjustment. IET Comput. Vis. 8, 66–75 (2014)

    Article  Google Scholar 

  6. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  7. Habbecke, M., Kobbelt, L.: Iterative multi-view plane fitting. In: VMV06, pp. 73–80 (2006)

    Google Scholar 

  8. Habbecke, M., Kobbelt, L.: A surface-growing approach to multi-view stereo reconstruction. In: CVPR (2007)

    Google Scholar 

  9. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. CVIU 68(2), 146–157 (1997)

    Article  Google Scholar 

  10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Kreyszig, E.: Differential Geometry. Dover Publications, New York (1991)

    MATH  Google Scholar 

  12. Liu, H.: Deeper Understanding on Solution Ambiguity in Estimating 3D Motion Parameters by Homography Decomposition and its Improvement. Ph.D. thesis, University of Fukui (2012)

    Google Scholar 

  13. Malis, E., Vargas, M.: Deeper understanding of the homography decomposition for vision-based control. Technical Report RR-6303, INRIA (2007)

    Google Scholar 

  14. Tanacs, A., Majdik, A., Molnar, J., Rai, A., Kato, Z.: Establishing correspondences between planar image patches. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA) (2014)

    Google Scholar 

  15. Woodham, R.J.: Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In: Image Understanding Systems and Industrial Applications, Proceedings SPIE, vol. 155, pp. 136–143 (1978)

    Google Scholar 

  16. Yu, G., Morel, J.-M.: ASIFT: an algorithm for fully affine invariant comparison. Image Processing On Line, 2011 (2011)

    Google Scholar 

  17. Megyesi, Z., K’os, G., Chetverikov, D.: Dense 3d reconstruction from images by normal aided matching. Mach. Graph. Vis. 15, 3–28 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Hajder .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Algorithm for Optimal Normal Estimation. The task is to minimize the cost function defined in Eq. 12 with respect to normal vector n. The scale of the vector is arbitrary, only the direction of the normal is required. Such kind of problems are typically solved using Lagrange-multipliers, however, it cannot be applied here since the derivatives become very difficult. For this reason, we utilize another constraint for the normal: let the sum of the coordinates be 1. Thus, n is written as \(n=[n_x,n_y,1-n_x-n_y]^T\). Equation 12 can be reformulated as,

$$\begin{aligned} \arg \min _{m}\sum _{k=1}^{4}\left( \frac{m^{T}q_{k}+w_{k,z}}{\alpha m^{T}q_{5}+\alpha w_{5,z}}-a_{k}\right) ^{2}, \end{aligned}$$

where \(m=[n_x,n_y]\), \(q_i=[w_{i,x}-w_{i,z},w_{i,y}-w_{i,z}]^T\). (Indices x, y, and z denote the first, second, and third coordinates of vectors, respectively.)

The minima/maxima can be obtained by taking the derivative with respect to vector m:

$$\begin{aligned} 2\sum _{k=1}^{4} \beta _k \gamma _k =0 , \end{aligned}$$

where

$$\begin{aligned} \beta _k=\left( \frac{m^{T}q_{k}+w_{k,z}}{\alpha m^{T}q_{5}+\alpha w_{5,z}}-a_{k}\right) , \\ \gamma _k =\left( \alpha \frac{(m^{T}q_{5}+w_{5,z})q_{k}-(m^{T}q_{k}+w_{k,z})q_{5}}{(\alpha m^{T}q_{5}+\alpha w_{5,z})^{2}}\right) . \end{aligned}$$

After taking the lowest common multiple of the fractions, the left side should be equal to zero as \(\sum _{k=1}^{4} \delta _k \kappa _k =0\), where

$$\begin{aligned} \delta _k=\left( m^{T}q_{k}+w_{k,z}-a_{k}\alpha m^{T}q_{5}-a_{k}\alpha w_{5,z}\right) ,\\ \kappa _k =\left( (m^{T}q_{5}+w_{5,z})q_{k}-(m^{T}q_{k}+w_{k,z})q_{5}\right) . \end{aligned}$$

It can be simplified as \(\sum _{k=1}^{4} e^1_k e^2_k =0\), where

$$\begin{aligned} e^1_k=\left( m^{T}(q_{k}-a_{k}\alpha q_{5})+(w_{k,z}-a_{k}\alpha w_{5,z})\right) ,\\ e^2_k=\left( (m^{T}q_{5})q_{k}-(m^{T}q_{k})q_{5}+w_{5,z}q_{k}-w_{k,z}q_{5}\right) . \end{aligned}$$

This is an equation with a 2D-vector:

$$\begin{aligned} \sum _{k=1}^{4} r \left( \begin{array}{c} m^{T}\left( q_{5}q_{k,x}-q_{i}q_{5,x}\right) +w_{5,z}q_{k,x}-w_{k,z}q_{5,x}\\ m^{T}\left( q_{5}q_{k,y}-q_{i}q_{5,y}\right) +w_{5,z}q_{k,y}-w_{k,z}q_{5,y}\end{array}\right) =0 , \end{aligned}$$

where \(r=\left( m^{T}(q_{k}-a_{k}\alpha q_{5})+(w_{k,z}-a_{k}\alpha w_{5,z})\right) \).

By introducing the \(m=[x,y]^{T}\) notation, the vector equation is modified as follows

$$\begin{aligned} \sum _{k=1}^{4}(\varOmega _{k}x+\varPsi _{k}y+\varGamma _{k})\left( \begin{array}{c} \varOmega _{k}^{1}x+\varPsi _{k}^{1}y+\varGamma _{k}^{1}\\ \varOmega _{k}^{2}x+\varPsi _{k}^{2}y+\varGamma _{k}^{2}\end{array}\right) =0 , \end{aligned}$$

where

$$\begin{aligned} \begin{array}{cc} \varOmega _{k}=q_{k,x}-\alpha q_{5,x}a_{k} , &{} \varPsi _{k}=q_{k,y}-\alpha q_{5,y}a_{k} ,\\ \varGamma _{k}=w_{k,z}-a_{k}\alpha w_{5,z} ,&{} \varOmega _{k}^{1}=0 ,\\ \varPsi _{k}^{1}=q_{5,y}q_{k,x}-q_{k,y}q_{5,x} ,&{} \varGamma _{k}^{1}=w_{5,z}q_{k,x}-w_{k,z}q_{5,x},\\ \varOmega _{k}^{2}=q_{5,x}q_{k,y}-q_{k,x}q_{5,y},&{} \varPsi _{k}^{2}=0,\\ \varGamma _{k}^{2}=w_{5,z}q_{i,y}-w_{i,z}q_{5,y}.&{} ~ \end{array} \end{aligned}$$

The rows of the vector equation give two special quadratic curves. They are written by their implicit equations as \(\sum _{k=1}^{4}A_{k}^{l}x^{2}+\sum _{k=1}^{4}B_{k}^{l}y^{2}+\sum _{k=1}^{4}C_{k}^{l}xy+\sum _{k=1}^{4}D_{k}^{l}x+\sum _{k=1}^{4}E_{k}^{l}y+\sum _{k=1}^{4}F_{k}^{l}=0\), where \(A_{k}^{l}=\varOmega _{k}\varOmega _{k}^{l}\), \(B_{k}^{l}=\varPsi _{k}\varPsi _{k}^{l}\), \(C_{k}^{l}=\varOmega _{k}^{l}\varPsi _{k}+\varPsi _{k}^{l}\varOmega _{k}\), \(D_{k}^{l}=\varOmega _{k}^{l}\varGamma _{k}+\varGamma _{k}^{l}\varOmega _{k}\), \(E_{k}^{l}=\varPsi _{k}^{l}\varGamma _{k}+\varGamma _{k}^{l}\varPsi _{k}\) and \(F_{k}^{l}=\varGamma _{k}\varGamma _{k}^{l}\), \(l\in {1,2}\). They are special because \(A_{k}^{1}=0\) and \(B_{k}^{2}=0\).

The solution of the optimal method described in the study (within appendix) is given by the intersection of two quadratic equations.

$$\begin{aligned} B_{1}y^{2}+C_{1}xy+D_{1}x+E_{1}y+F_{1}=0 , \\ A_{2}x^{2}+C_{2}xy+D_{2}x+E_{2}y+F_{2}=0. \end{aligned}$$

Parameter y can be obtained from the latter equation as

$$\begin{aligned} y=-\frac{A_{2}x^{2}+D_{2}x+F_{2}}{C_{2}x+E_{2}}. \end{aligned}$$

Substituting y into the first equation the following expression is obtained

$$\begin{aligned} B_{1}\left( \frac{A_{2}x^{2}+D_{2}x+F_{2}}{C_{2}x+E_{2}}\right) ^{2}- C_{1}x\frac{A_{2}x^{2}+D_{2}x+F_{2}}{C_{2}x+E_{2}}+D_{1}x \\ -E_{1}\frac{A_{2}x^{2}+D_{2}x+F_{2}}{C_{2}x+E_{2}}+F_{1}=0. \end{aligned}$$

If both sides are multiplied with \((C_{2}x+E_{2})^{2}\), then the equation modifies as follows

$$\begin{aligned}&B_{1}(A_{2}x^{2}+D_{2}x+F_{2})^{2}- C_{1}x\left( A_{2}x^{2}+D_{2}x+F_{2}\right) \left( C_{2}x+E_{2}\right) \\&\quad +D_{1}x\left( C_{2}x+E_{2}\right) ^{2}- E_{1}\left( A_{2}x^{2}+D_{2}x+F_{2}\right) \left( C_{2}x+E_{2}\right) + F_{1}\left( C_{2}x+E_{2}\right) ^{2}=0 \end{aligned}$$

This is a fourth-order polynomial where the coefficients are as follows

$$\begin{aligned} \begin{array}{cc} x^{4}: &{} B_{1}A_{2}^{2}-C_{1}A_{2}C_{2} \\ x^{3}: &{} 2B_{1}A_{2}D_{2}-C_{1}A_{2}E_{2}- C_{1}D_{2}C_{2}+D_{1}C_{2}^{2}-E_{1}A_{2}C_{2} \\ \begin{array}{c} x^{2}: \\ ~ \end{array} &{} \begin{array}{c} B_{1}D_{2}^{2}+2B_{1}A_{2}F_{2}- C_{1}D_{2}E_{2}-C_{1}F_{2}C_{2}+2D_{1}C_{2}E_{2} \\ -E_{1}A_{2}E_{2}-E_{1}D_{2}C_{2}+F_{1}C_{2}^{2} \end{array} \\ \begin{array}{c} x^{1}: \\ ~ \end{array} &{} \begin{array}{c} 2B_{1}D_{2}F_{2}-C_{1}F_{2}E_{2}+ D_{1}E_{2}^{2}-E_{1}D_{2}E_{2}-E_{1}F_{2}C_{2} \\ +2F_{1}C_{2}E_{2} \end{array} \\ x^{0}: &{} B_{1}F_{2}^{2}-E_{1}F_{2}E_{2}+F_{1}E_{2}^{2} \end{array} \end{aligned}$$

Remark that the equation \(C_{2}x+E_{2}=0\) can also be considered. (In this case the first equation is independent from y.)

Fig. 12.
figure 12figure 12

Quadratic curves.

An example for two quadratic curves with three real intersections is visualized in Fig. 12. (The parameters of curves are \(B1 = -1.9055\), \(C1 = 2.2632\), \(D1 = 2.8577\), \(E1 = -9.4392\), \(F1 = 7.7081\), and \(A2 = -2.2632\), \(C2 = 1.9055\), \(D2 = -4.2074\), \(E2 = 2.3903\), \(F2 = -1.1190\)).

Affine Parameters from Homography. The affine parameters can be obtained from the homography between the stereo image pairs. Let us assume that the homography H is given. Then the correspondence between the coordinates on the first (u and v) and second (\(u'\) and \(v'\)) images is written as

$$\begin{aligned} u'=\frac{h_{1}^{T}\left[ u,v,1\right] ^{T}}{h_{3}^{T}\left[ u,v,1\right] ^{T}}, \\ v'=\frac{h_{2}^{T}\left[ u,v,1\right] ^{T}}{h_{3}^{T}\left[ u,v,1\right] ^{T}}, \end{aligned}$$

where the \(3 \times 3\) homography matrix H is written as

$$\begin{aligned} H=\left[ \begin{array}{c} h_1^T \\ h_2^T \\ h_3^T \end{array} \right] = \left[ \begin{array}{ccc} h_{11} &{} h_{12} &{} h_{13} \\ h_{21} &{} h_{22} &{} h_{23} \\ h_{31} &{} h_{32} &{} h_{33} \end{array} \right] . \end{aligned}$$

The affine parameters come from the partial derivatives of the perspective plane-plane transformation. The top left element \(a_{11}\) of affine transformation matrix is as follows

$$\begin{aligned} a_{11}=\frac{\partial u'}{\partial u}=\frac{h_{11}h_{3}^{T}\left[ u,v,1\right] ^{T}-h_{31}h_{1}^{T}\left[ u,v,1\right] ^{T}}{\left( h_{3}^{T}\left[ u,v,1\right] ^{T}\right) ^{2}}= \frac{h_{11}-h_{31}u'}{s} , \end{aligned}$$

where \(s=h_3^T [u,v,1]^T\). The other components of affine matrix are obtained similarly

$$\begin{aligned} a_{12}=\frac{\partial u'}{\partial v}=\frac{h_{12}-h_{32}u'}{s} , \\ a_{21}=\frac{\partial v'}{\partial u}=\frac{h_{21}-h_{31}v'}{s} , \\ a_{22}=\frac{\partial v'}{\partial v}=\frac{h_{22}-h_{32}v'}{s}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Barath, D., Molnar, J., Hajder, L. (2016). Novel Methods for Estimating Surface Normals from Affine Transformations. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29971-6_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29970-9

  • Online ISBN: 978-3-319-29971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics