Abstract
We deal with the location problem for a franchise type expanding firm in competition with other firms in a geographical area. The firm aims at maximization of the market share captured by the new facilities and minimization of the lost market share of the old facilities caused by the entering of the new facilities in the market. The market share of each facility is estimated assuming that customers are served by the most attractive facility. A new tie breaking rule is introduced to serve the customers for which there are more than one facility with the maximum attraction, which leads to a hard nonlinear bi-objective optimization problem. A heuristic algorithm is proposed which obtains a good approximation of the Pareto front when the new facilities have to be selected from a finite set of candidates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182 (1), 40–62 (2007)
Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111, 197–225 (2002)
Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (1), 29–50 (2007)
Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)
Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York, NJ (2007)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)
Doerner, K.F., Gutjahr, W.J., Nolz, P.C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31 (3), 651–678 (2009). doi:10.1007/s00291-008-0126-7. http://dx.doi.org/10.1007/s00291-008-0126-7
Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model. Comput. Manag. Sci. 1 (2), 193–208 (2004)
Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Modell. 34 (7), 1689–1709 (2010). doi:10.1016/j.apm.2009.10.005. http://www.sciencedirect.com/science/article/pii/S0307904X09003242
Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45 (0), 92–118 (2014)
Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure. Netw. Spat. Econ. 7, 19–44 (2007)
Francis, R.L., Lowe, T.J., Tamir, A.: Demand point aggregation for location models. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Application and Theory, pp. 207–232. Springer, Berlin (2002)
Friesz, T.L., Miller, T., Tobin, R.L.: Competitive networks facility location models: a survey. Pap. Reg. Sci. 65, 47–57 (1998)
Ghosh, A., Craig, C.S.: FRANSYS: a franchise distribution system location model. J. Retail. 67 (4), 466–495 (1991)
Goel, T., Deb, K.: Hybrid methods for multi-objective evolutionary algorithms. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pp. 188–192 (2002)
Hakimi, L.: Location with spatial interactions: competitive locations and games. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)
Huapu, L., Jifeng, W.: Study on the location of distribution centers: a bi-level multi-objective approach. In: Logistics, pp. 3038–3043. American Society of Civil Engineers (2009)
Huff, D.L.: Defining and estimating a trade area. J. Market. 28, 34–38 (1964)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8 (2), 149–172 (2000)
Lančinskas, A., Žilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Oster, P. (eds.) Applied Parallel and Scientific Computing. Lecture Notes in Computer Science, vol. 7782, pp. 422–433. Springer, Berlin, Heidelberg (2013). doi:10.1007/978-3-642-36803-5_31
Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Anal.: Modell. Control 18 (3), 293–313 (2013)
Liao, S.H., Hsieh, C.L.: A capacitated inventory-location model: formulation, solution approach and preliminary computational results. In: Chien, B.C., Hong, T.P., Chen, S.M., Ali, M. (eds.) Next-Generation Applied Intelligence. Lecture Notes in Computer Science, vol. 5579, pp. 323–332. Springer, Berlin, Heidelberg (2009)
Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J. Heuristics 15 (2), 153–176 (2009)
Peeters, P.H., Plastria, F.: Discretization results for the Huff and Pareto-Huff competitive location models on networks. Top 6, 247–260 (1998)
Pelegrín, B., Fernández, P., García, M.D.: On tie breaking in competitive location under binary customer behavior, OMEGA-International Journal of Management Science 52, 156–167 (2015)
Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129 (3), 461–470 (2001)
Plastria, F.: Avoiding cannibalization and/or competitor reaction in planar single facility location. J. Oper. Res. Soc. Jpn. 48, 148–157 (2005)
Redondo, J.L., Fernández, J., Álvarez, J.D., Arrondoa, A.G., Ortigosa, P.M.: Approximating the Pareto-front of continuous bi-objective problems: application to a competitive facility location problem. In: Casillas, J., Martnez-Lpez, F.J., Corchado Rodrguez, J.M. (eds.) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 171, pp. 207–216. Springer, Berlin, Heidelberg (2012)
ReVelle, C.S., Eiselt, H.A., Daskin, M.S.: A bibliography for some fundamental problem categories in discrete location science. Eur. J. Oper. Res. 184 (3), 817–848 (2008)
Schaffer, J.D., Grefenstette, J.J.: Multi-objective learning via genetic algorithms. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence – Volume 1, IJCAI’85, pp. 593–595. Morgan Kaufmann Publishers, San Francisco, CA (1985)
Serra, D., Colomé, R.: Consumer choice and optimal locations models: formulations and heuristics. Pap. Reg. Sci. 80 (4), 439–464 (2001)
Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)
Srinivas, N., Deb, K.: Multiobjective optimization using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 2, 221–248 (1994)
Suárez-Vega, R., Santos-Penate, D.R., Dorta-Gonzalez, P.: Discretization and resolution of the (r | X p )-medianoid problem involving quality criteria. Top 12 (1), 111–133 (2004)
Suárez-Vega, R., Santos-Penate, D.R., Dorta-González, P.: The follower location problem with attraction thresholds. Pap. Reg. Sci. 86 (1), 123–137 (2007)
Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147, 109–141 (2006)
Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp. 3234–3241. IEEE Press, New York (2006)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature — PPSN V. Lecture Notes in Computer Science, vol. 1498, pp. 292–301. Springer, Berlin, Heidelberg (1998)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Trans. Evol. Comput. 3 (4), 257–271 (1999)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)
Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis. Applied Optimization, vol. 103. Springer, Berlin, Heidelberg (2010)
Acknowledgements
This research has been supported by the Ministry of Economy and Competitiveness of Spain (MTM2015-70260-P), the Program to Support Research of the Seneca Foundation (The Agency of Science and Technology of the Region of Murcia, 19241/PI/14).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Lančinskas, A., Fernández, P., Pelegrín, B., Žilinskas, J. (2016). Estimating the Pareto Front of a Hard Bi-criterion Competitive Facility Location Problem. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds) Advances in Stochastic and Deterministic Global Optimization. Springer Optimization and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-29975-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-29975-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29973-0
Online ISBN: 978-3-319-29975-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)