Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 49))

  • 2507 Accesses

Abstract

Recommender system (RS) is a revolutionary technique which has transformed the applications from content based to customer centric. It is the method of finding what the customer wants, it can either be data or an item. The ability to collect and compute information has enabled the emergence of recommendation techniques, and these techniques provides a better understanding of users and clients. The innovation behind recommender frameworks has advanced in the course of recent years into a rich accumulation of tools that induces the researcher and scientist to create precise recommenders. This article provides an outline of recommender systems and explains in detail about the collaborative filtering. It also defines various limitations of traditional recommendation methods and discusses the hybrid extensions by merging spatial properties of the user (item-based collaborative filtering) with users personalized preferences (user-based collaborative filtering). This hybrid system is applicable to a broader range of applications. It helps the user to find the items of their interest quickly and more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale based implicit ratings for mobile music recommendations. Inf. Sci. 180(11), 2142–2155 (2010)

    Article  Google Scholar 

  2. Choi, K., Yoo, D., Kim, G., Suh, Y.: A hybrid online-product recommendation system: combining implicit rating-based collaborative filtering and sequential pattern analysis. Electron. Commer. Res. Appl. doi:10.1016/j.elerap.2012.02.004 (in press)

  3. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item to item collaborative filtering. IEEE Internet Computing (2003)

    Google Scholar 

  4. Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J.A., Cerezo, A., Romero, F.P.: A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0. Inf. Sci. 181(9), 1503–1516 (2011)

    Article  Google Scholar 

  5. Porcel, C., Moreno, J.M., Herrera-Viedma, E.: A multi-disciplinary recommender system to advice research resources in university digital libraries. Expert Syst. Appl. 36(10), 12520–12528 (2009)

    Article  Google Scholar 

  6. wikipedia.org Recommender system

    Google Scholar 

  7. Upendra Shardanand: Social information filtering for music recommendation. MIT EECS M. Engineering thesis, also TR-94-04, Learning and Common Sense Group, MIT Media Laboratory (1994)

    Google Scholar 

  8. Nanolopoulus, A., Rafailidis, D., Symeonidis, P., Manolopoulus, Y.: Music box: personalized music recommendation based on cubic analysis of social tags. IEEE Trans. Audio Speech Lang. Process. 18(2), 407–412 (2010)

    Article  Google Scholar 

  9. Tan, S., Bu, J., Chen, C.H., He, X.: Using rich social media information for music recommendation via hypergraph model. ACM Trans. Multimedia Comput. Commun. Appl. 7(1) Article 7 (2011)

    Google Scholar 

  10. Carrer-Neto, W., Hernandez-Alcaraz, M.L., Valencia-García, R., Garca-Sanchez, F.: Social knowledge-based recommender system, Application to the movies domain. Expert Syst. Appl. 39(12), 10990–11000 (2012)

    Article  Google Scholar 

  11. Winoto, P., Tang, T.Y.: The role of user mood in movie recommendations. Expert Syst. Appl. 37(8), 6086–6092 (2010)

    Article  Google Scholar 

  12. Symeonidis, P., Nanopoulus, A., Manolopoulus, Y.: MovieExplain: a recommender system with explanations. In: Proceedings of the 2009 ACM Conference on Recommender Systems, pp. 317–320 (2009)

    Google Scholar 

  13. Netflix News and Info—Local Favorites [Online]. Available: http://tinyurl.com/4qt8ujo

  14. Huang, Z., Zeng, D., Chen, H.: A comparison of collaborative filtering recommendation algorithms for e-commerce. IEEE Intell. Syst. 22(5), 68–78 (2007)

    Article  Google Scholar 

  15. Castro-Sanchez, J.J., Miguel, R., Vallejo, D., Lopez-Lopez, L.M.: A highly adaptive recommender system based on fuzzy logic for B2C e-commerce portals. Expert Syst. Appl. 38(3), 2441–2454 (2011)

    Article  Google Scholar 

  16. Costa-Montenegro, E., Barragans-Mart nez, A.B., Rey-Lopez, M.: Which App? A recommender system of applications in markets: implementation of the service for monitoring users interaction. Expert Syst. Appl. 39(10), 9367–9375 (2012)

    Google Scholar 

  17. Mcnally, K., Omahony, M.P., Coyle, M., Briggs, P., Smyth, B.: A case study of collaboration and reputation in social web search. ACM Trans. Intel. Syst. Technol. 3(1) Article 4 (2011)

    Google Scholar 

  18. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  19. Sarwat, M., Levandoski, J.J., Eldawy, A., Mokbel, M.F.: LARS*: an efficient and scalable location-aware recommender system. IEEE Trans. Knowl. Data Eng. 26(6) (2014)

    Google Scholar 

  20. Meng, S., Dou, W., Zhang, X., Chen, J.: “KASR”: a keyword-aware service recommendation method on mapreduce for big data applications (2014)

    Google Scholar 

  21. SATNAM ALAG: Collective intelligence in action 2009 by Manning Publications Co

    Google Scholar 

  22. Bobadilla, J., Ortega, F., Hernando, A., Arroyo, A.: A balanced memory based collaborative filtering similarity measure. Int. J. Intell. Syst. 27(10), 939946 (2013)

    Google Scholar 

  23. Choi, K., Suh, Y.: A new similarity function for selecting neighbors for each target item in collaborative filtering. Knowl. Based Syst. 37, 146153 (2013)

    Article  Google Scholar 

  24. Salton, G.: Automatic text processing. Addison-Wesley, Reading (1989)

    Google Scholar 

  25. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Comm. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  26. Bobadilla, J., Ortega, F., Hernando, A.: A collaborative filtering similarity measure based on singularities. Inf. Process. Manage. 48(2), 204217 (2012)

    Article  Google Scholar 

  27. Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of Netnews. In: Proceedings of 1994 Computer Supported Cooperative Work Conference (1994)

    Google Scholar 

  28. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Comm. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  29. Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of 12th International Conference on Machine Learning, pp. 331–339 (1995)

    Google Scholar 

  30. Antonopoulus, N., Salter, J.: Cinema screen recommender agent: combining collaborative and content-based filtering. IEEE Intell. Syst. 21 35–41 (2006)

    Google Scholar 

  31. Meteren, R., Someren, M.: Using content-based filtering for recommendation. In: Proceedings of ECML 2000 Workshop: Machine Learning in Information Age, pp. 47–56 (2000)

    Google Scholar 

  32. Bobadilla, F., Ortega, A., Hernando, A.: Gutierrez. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  33. Explicit and implicit rating Shardanand and Meas (1995)

    Google Scholar 

  34. Pazzani, M.: A framework for collaborative, content-based, and demographic filtering. Artif. Intell. Rev. Spec. Issue Data Min. Internet 13(5–6), 393–408 (1999)

    Article  Google Scholar 

  35. Garcia, R., Amatriain, X.: Weighted content based methods for recommending connections in online social networks. In: Proceedings of the 2010 ACM Conference on Recommender Systems, pp. 68–71 (2010)

    Google Scholar 

  36. Bobadilla, J., Hernando, A., Ortega, F., Gutierrez, A.: Collaborative filtering based on significances. Inf. Sci. 185(1), 1–17 (2012)

    Article  Google Scholar 

  37. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommender tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  39. George, T., Meregu, S.: A scalable collaborative filtering framework based on co-clustering. In: IEEE International Conference on Data Mining (ICDM), pp. 625–628 (2005)

    Google Scholar 

  40. Candillier, L., Meyer, F., Boulle, M.: Comparing state-of-the-art collaborative filtering systems. Lect. Notes Comput. Sci. 4571, 548–562 (2007)

    Article  Google Scholar 

  41. Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Resource recommendation for social tagging: a multi-channel hybrid approach. In: Proceedings of the 2010 ACM Conference on Recommender Systems, pp. 60–67 (2010)

    Google Scholar 

  42. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  43. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems (Chap. 9). In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 291–324 (2007)

    Google Scholar 

  44. Bobadilla, J., Hernando, A., Ortega, F., Bernal, J.: A framework for collaborative filtering recommender systems. Expert Syst. Appl. 38(12), 14609–14623 (2011)

    Article  Google Scholar 

  45. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–19 (2009)

    Article  MATH  Google Scholar 

  46. Luo, X., Xia, Y., Zhu, Q.: Incremental collaborative filtering recommender based on regularized matrix factorization. Knowl.-Based Syst. 27, 271–280 (2012)

    Article  Google Scholar 

  47. Yager, R.R.: Fuzzy logic methods in recommender systems. Fuzzy Sets Syst. 136(2), 133–149 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ingoo, H., Kyong, J.O., Tae, H.R.: The collaborative filtering recommendation based on SOM cluster-indexing CBR. Expert Syst. Appl. 25, 413–423 (2003)

    Article  Google Scholar 

  49. Vozalis, M.G., Margaritis, K.G.: Using SVD and demographic data for the enhancement of generalized collaborative filtering. Inf. Sci. 177, 3017–3037 (2007)

    Article  Google Scholar 

  50. Cacheda, F., Carneiro, V., Fernandez, D., Formoso, V.: Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Trans. Web 5(1) Article 2 (2011)

    Google Scholar 

  51. Park, D.H., Kim, H.K., Choi, I.Y., Kim, J.K.: A literature review and classification of recommender Systems research. Expert Syst. Appl. 39, 10059–10072 (2012)

    Article  Google Scholar 

  52. Kong, F., Sun, X., Ye, S.: A comparison of several algorithms for collaborative filtering in startup stage. IEEE Transactions on Networks, Sensing and Control, pp. 25–28 (2005)

    Google Scholar 

  53. wikipedia.org-wiki-Cosine-similarity

    Google Scholar 

  54. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems (Chap. 9). In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web pp. 291–324 (2007)

    Google Scholar 

  55. Sarwar, B., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web. ACM Press, Hong Kong pp. 285–295 (2001)

    Google Scholar 

  56. Fengkun, L., Hong, J.L.: Use of social network information to enhance collaborative filtering performance. Expert Syst. Appl. 37(7), 47724778 (2010)

    Google Scholar 

  57. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  58. Al-Shamri, M.Y.H., Bharadwaj, K.K.: Fuzzy-genetic approach to recommender systems based on a novel hybrid user model. Expert Syst. Appl. 35(3), 1386–1399 (2008)

    Article  Google Scholar 

  59. Gao, L.Q., Li, C.: Hybrid personalized recommended model based on genetic algorithm. In: International Conference on Wireless Communication, Networks and Mobile Computing, pp. 9215–9218 (2008)

    Google Scholar 

  60. Oku, K., Kotera, R., Sumiya, K.: Geographical recommender system based on interaction between map operation and category selection. In: Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 71–74 (2010)

    Google Scholar 

  61. Matyas, C., Schlieder, C.: A spatial user similarity measure for geographic recommender systems. In: Proceedings of the 3rd International Conference on GeoSpatial Semantics, pp. 122–139 (2009)

    Google Scholar 

  62. Park, D.H., Kim, H.K., Choi, I.Y., Kim, J.K.: A literature review and classification of recommender systems research. Expert Syst. Appl. 39, 10059–10072 (2012)

    Article  Google Scholar 

  63. Porcel, C., Herrera-Viedma, E.: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowl.-Based Syst. 23(1), 32–39 (2010)

    Article  Google Scholar 

  64. Cho, S.B., Hong, J.H., Park, M.H.: Location-based recommendation system using Bayesian users preference model in mobile devices. Lect. Notes Comput. Sci. 4611, 1130–1139 (2007)

    Article  Google Scholar 

  65. Zhong, J., Li, X.: Unified collaborative filtering model based on combination of latent features. Expert Syst. Appl. 37, 5666–5672 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Suganeshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Suganeshwari, G., Syed Ibrahim, S.P. (2016). A Survey on Collaborative Filtering Based Recommendation System. In: Vijayakumar, V., Neelanarayanan, V. (eds) Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC – 16’). Smart Innovation, Systems and Technologies, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-30348-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30348-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30347-5

  • Online ISBN: 978-3-319-30348-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics