Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ensembles of Interesting Subgroups for Discovering High Potential Employees

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9652))

Included in the following conference series:

  • 3173 Accesses

Abstract

We propose a new method for building a classifier ensemble, based on subgroup discovery techniques in data mining. We apply subgroup discovery techniques to a labeled training dataset to discover interesting subsets, characterized by a conjuctive logical expression (rule), where such subset has an unusually high dominance of one class. Treating these rules as base classifiers, we propose several simple ensemble methods to construct a single classifier. Another novel aspect of the paper is that it applies these ensemble methods, along with standard anomaly detection and classification, to automatically identify high potential (HIPO) employees - an important problem in management. HIPO employees are critical for future-proofing the organization in the face of attrition, economic uncertainties and business challenges. Current HR processes for HIPO identification are manual and suffer from subjectivity, bias and disagreements. Proposed data-driven analytics algorithms address some of these issues. We show that the new ensemble methods perform better than other methods, including other ensemble methods on a real-life case-study dataset of a large multinational IT services company.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hewitt Associates: Getting to high potential: how organizations define and calibrate their critical talent. Hewitt Associates (2008). http://www.hewitt.com

  2. Atzmüller, M., Puppe, F.: SD-Map – a fast algorithm for exhaustive subgroup discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Atzmuller, M.: Knowledge intensive subgroup mining: techniques for automatic and interactive discovery. Aka Akademische Verlagsgsellschaft (2007)

    Google Scholar 

  4. Azzara, J.: Identifying High Potential Employees. PeopleTalentSolutions (2007)

    Google Scholar 

  5. Barnett, R.: Identifying High Potential Talent. MDA Leadership Consulting Inc. (2008)

    Google Scholar 

  6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buckingham, M., Vosburgh, R.M.: The 21st century human resource function: it’s the talent, stupid!. Hum. Resour. Plann. 24(4), 17–23 (2001)

    Google Scholar 

  9. Bueno, C.M., Tubbs, S.L.: Identifying global leadership competencies: an exploratory study. J. Am. Acad. Bus. 5(1–2), 80–87 (2004)

    Google Scholar 

  10. Corporate Leadership Council: Realizing the Full Potential of Rising Talent (Volume I): A Quantitative Analysis of the Identification and Development of High Potential Employees. Corporate Executive Board (2005)

    Google Scholar 

  11. Dries, N., Pepermans, R.: Using emotional intelligence to identify high potential: a metacompetency perspective. Leadersh. Organ. Dev. J. 28(8), 749–770 (2007)

    Article  Google Scholar 

  12. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning (ICML), pp. 148–156 (1996)

    Google Scholar 

  13. Friedman, J., Fisher, I.: Bump hunting in high-dimensional data. Stat. Comput. 9, 123–143 (1999)

    Article  Google Scholar 

  14. Gelens, J., Hofmans, J., Dries, N., Pepermans, R.: Talent management and organisational justice: employee reactions to high potential identification. Hum. Resour. Manag. J. 24(2), 159–175 (2014)

    Article  Google Scholar 

  15. Gemberger, D., Lavrac, N.: Expert guided subgroup discovery: methodology and application. J. Artif. Intell. Res. 17, 501–527 (2002)

    MATH  Google Scholar 

  16. Jerusalim, R.S., Hausdorf, P.A.: Managers’ justice perceptions of high potential identification practices. J. Manag. Dev. 26(10), 933–950 (2007)

    Article  Google Scholar 

  17. Kavsek, B., Lavrac, N., Jovanoski, V.: APRIORI-SD: adapting association rule learning to subgroup discovery. In: Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 230–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Klosgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271. MIT Press (1996)

    Google Scholar 

  19. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. 8(3–4), 237–253 (2000)

    Article  Google Scholar 

  20. Lavrac, N., Cestnik, B., Gemberger, D., Flach, P.: Subgroup discovery with CN2-SD. Mach. Learn. 57, 115–143 (2004)

    Article  Google Scholar 

  21. Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  22. Lombardo, M.M., Eichinger, R.W.: Do rising stars avoid risk?: status-based labels and decision making. High Potentials High Learn. 39(4), 321–329 (2000)

    Google Scholar 

  23. Pepermans, R., Vloeberghs, D., Perkisas, B.: High potential identification policies: an empirical study among belgian companies. J. Manag. Dev. 22(8), 660–678 (2003)

    Article  Google Scholar 

  24. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large datasets. In: Proceedings of SIGMOD 2000, pp. 162–172 (2000)

    Google Scholar 

  25. Rogers, R.W., Smith, A.B.: Finding future perfect senior leaders: spotting executive potential. In: Development Dimensions International (2007)

    Google Scholar 

  26. Scheffer, T., Wrobel, S.: Finding the most interesting patterns in a database quickly by using sequential sampling. J. Mach. Learn. Res. 3, 833–862 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Scholtz, M.: Sampling based sequential subgroup mining. In: Proceedings of the 11th SIG KDD, pp. 265–274 (2005)

    Google Scholar 

  28. Spreitzer, G.M., McCall, M.W., Mahoney, J.D.: Early identification of international executive potential. J. Appl. Psychol. 82(1), 6–29 (1997)

    Article  Google Scholar 

  29. Wells, S.J.: Who’s next: creating a formal program for developing new leaders can pay huge dividends, but many firms aren’t reaping those rewards. HR Mag. 48(11), 44–64 (2003)

    Google Scholar 

  30. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  31. Zhi-Hua, Z.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)

    Google Scholar 

Download references

Acknowledegments

The authors thank Dr. Ritu Anand, Preeti Gulati for their support and our team members for much help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Keshav Palshikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Palshikar, G.K., Sahu, K., Srivastava, R. (2016). Ensembles of Interesting Subgroups for Discovering High Potential Employees. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9652. Springer, Cham. https://doi.org/10.1007/978-3-319-31750-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31750-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31749-6

  • Online ISBN: 978-3-319-31750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics