Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shot Boundary Detection Using Multi-instance Incremental and Decremental One-Class Support Vector Machine

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9651))

Included in the following conference series:

Abstract

This paper presents a novel framework to detect shot boundaries based on the One-Class Support Vector Machine (OCSVM). Instead of comparing the difference between pair-wise consecutive frames at a specific time, we measure the divergence between two OCSVM classifiers, which are learnt from two contextual sets, i.e., immediate past set and immediate future set. To speed up the processing procedure, the two OCSVM classifiers are updated in an online fashion by our proposed multi-instance incremental and decremental one-class support vector machine algorithm. Our approach, which inherits the advantages of OCSVM, is robust to noises such as abrupt illumination changes and large object or camera movements, and capable of detecting gradual transitions as well. Experimental results on some benchmark datasets compare favorably with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://trecvid.nist.gov/trecvid.data.html.

  2. 2.

    http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.7.org.html.

References

  1. Hanjalic, A.: Shot-boundary detection: unraveled and resolved? IEEE Trans. Circuits Syst. Video Technol. 12(2), 90–105 (2002)

    Article  Google Scholar 

  2. Huang, C.L., Liao, B.Y.: A robust scene-change detection method for video segmentation. IEEE Trans. Circuits Syst. Video Technol. 11(12), 1281–1288 (2001)

    Article  Google Scholar 

  3. Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., Zhang, B.: A formal study of shot boundary detection. IEEE Trans. Circuits Syst. Video Technol. 17(2), 168–186 (2007)

    Article  Google Scholar 

  4. Lu, Z.M., Shi, Y.: Fast video shot boundary detection based on SVD and pattern matching. IEEE Trans. Image Process. 22(12), 5136–5145 (2013)

    Article  MathSciNet  Google Scholar 

  5. Kowdle, A., Chen, T.: Learning to segment a video to clips based on scene and camera motion. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 272–286. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Trans. Signal Process. 53(8), 2961–2974 (2005)

    Article  MathSciNet  Google Scholar 

  7. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  8. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)

    Article  Google Scholar 

  9. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. Adv. Neural Inf. Process. Syst. 13, 409–415 (2001)

    Google Scholar 

  10. Laskov, P., Gehl, C., Krüger, S., Müller, K.R.: Incremental support vector learning: analysis, implementation and applications. J.Mach. Learn. Res. 7, 1909–1936 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Karasuyama, M., Takeuchi, I.: Multiple incremental decremental learning of support vector machines. In: Advances in Neural Information Processing Systems, pp. 907–915 (2009)

    Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  13. Mühling, M., Ewerth, R., Stadelmann, T., Zöfel, C., Shi, B., Freisleben, B.: University of Marburg at TRECVID 2007: Shot Boundary Detection and High Level Feature Extraction. In: TRECVID (2007)

    Google Scholar 

  14. Zhao, Z.C., Zeng, X., Liu, T., Cai, A.N.: BUPT at TRECVID 2007: Shot Boundary Detection. In: TRECVID (2007)

    Google Scholar 

  15. Ren, J., Jiang, J., Chen, J.: Determination of Shot Boundary in MPEG videos for TRECVID 2007. In: TRECVID (2007)

    Google Scholar 

  16. Kawai, Y., Sumiyoshi, H., Yagi, N.: Shot Boundary Detection at TRECVID 2007. In: TRECVID (2007)

    Google Scholar 

  17. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhe Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, H., Deng, J.D., Woodford, B.J. (2016). Shot Boundary Detection Using Multi-instance Incremental and Decremental One-Class Support Vector Machine. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31753-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31752-6

  • Online ISBN: 978-3-319-31753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics