Abstract
Numerical reproducibility failures appear in massively parallel floating-point computations. One way to guarantee this reproducibility is to extend the IEEE-754 correct rounding to larger computing sequences, e.g. to the BLAS. Is the extra cost for numerical reproducibility acceptable in practice? We present solutions and experiments for the level 1 BLAS and we conclude about their efficiency.
Similar content being viewed by others
References
IEEE 754–2008, Standard for Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers, New York (2008)
Bohlender, G.: Floating-point computation of functions with maximum accuracy. IEEE Trans. Comput. C-26(7), 621–632 (1977)
Chohra, C., Langlois, P., Parello, D.: Implementation and Efficiency of Reproducible Level 1 BLAS (2015). http://hal-lirmm.ccsd.cnrs.fr/lirmm-01179986
Collange, C., Defour, D., Graillat, S., Iakimchuk, R.: Reproducible and accurate matrix multiplication in ExBLAS for high-performance computing. In: SCAN 2014, Würzburg, Germany (2014)
Dekker, T.J.: A floating-point technique for extending the available precision. Numer. Math. 18, 224–242 (1971)
Demmel, J.W., Nguyen, H.D.: Fast reproducible floating-point summation. In: Proceedings of 21th IEEE Symposium on Computer Arithmetic. Austin, Texas, USA (2013)
Intel Math Kernel Library. http://www.intel.com/software/products/mkl/
Jézéquel, F., Langlois, P., Revol, N.: First steps towards more numerical reproducibility. ESAIM: Proc. 45, 229–238 (2013)
Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)
Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)
Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc., Sebastopol (2007)
Rump, S.M.: Ultimately fast accurate summation. SIAM J. Sci. Comput. 31(5), 3466–3502 (2009)
Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation - part I: faithful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)
Story, S.: Numerical reproducibility in the Intel Math Kernel Library. Salt Lake City, November 2012
Van Zee, F.G., van de Geijn, R.A.: BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans. Math. Software 41(3), 14:1–14:33 (2015)
Yamanaka, N., Ogita, T., Rump, S., Oishi, S.: A parallel algorithm for accurate dot product. Parallel Comput. 34(68), 392–410 (2008)
Zhu, Y.K., Hayes, W.B.: Correct rounding and hybrid approach to exact floating-point summation. SIAM J. Sci. Comput. 31(4), 2981–3001 (2009)
Zhu, Y.K., Hayes, W.B.: Algorithm 908: online exact summation of floating-point streams. ACM Trans. Math. Softw. 37(3), 37:1–37:13 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Chohra, C., Langlois, P., Parello, D. (2016). Efficiency of Reproducible Level 1 BLAS. In: Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds) Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015. Lecture Notes in Computer Science(), vol 9553. Springer, Cham. https://doi.org/10.1007/978-3-319-31769-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-31769-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31768-7
Online ISBN: 978-3-319-31769-4
eBook Packages: Computer ScienceComputer Science (R0)