Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biclustering of Gene Expression Data Based on SimUI Semantic Similarity Measure

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9648))

Included in the following conference series:

  • 2215 Accesses

Abstract

Biclustering is an unsupervised machine learning technique that simultaneously clusters genes and conditions in gene expression data. Gene Ontology (GO) is usually used in this context to validate the biological relevance of the results. However, although the integration of biological information from different sources is one of the research directions in Bioinformatics, GO is not used in biclustering as an input data. A scatter search-based algorithm that integrates GO information during the biclustering search process is presented in this paper. SimUI is a GO semantic similarity measure that defines a distance between two genes. The algorithm optimizes a fitness function that uses SimUI to integrate the biological information stored in GO. Experimental results analyze the effect of integration of the biological information through this measure. A SimUI fitness function configuration is experimentally studied in a scatter search-based biclustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eren, K., Deveci, M., Kucuktunc, O., Catalyurek, U.V.: A comparative analysis of biclustering algorithms for gene expression data. Briefings Bioinform. 14(3), 279–292 (2013)

    Article  Google Scholar 

  2. Divina, F., Aguilar-Ruiz, J.: A multi-objective approach to discover biclusters in microarray data. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 385–392. ACM, New York (2007)

    Google Scholar 

  3. Flores, J.L., Inza, I., Larrañaga, P., Calvo, B.: A new measure for gene expression biclustering based on non-parametric correlation. Comput. Methods Programs Biomed. 112(3), 367–397 (2013)

    Article  Google Scholar 

  4. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  5. Verbanck, M., Le, S., Pages, J.: A new unsupervised gene clustering algorithm based on the integration of biological knowledge into expression data. BMC Bioinform. 14(1), 42 (2013)

    Article  Google Scholar 

  6. Nepomuceno, J.A., Troncoso, A., Nepomuceno-Chamorro, I.A., Aguilar-Ruiz, J.: Integrating biological knowledge based on functional annotations for biclustering of gene expression data. Comput. Methods Programs Biomed. 119(3), 163–180 (2015)

    Article  Google Scholar 

  7. Pesquita, C., Faria, D., Bastos, H., Ferreira, A., Falcao, A., Couto, F.: Metrics for go based protein semantic similarity: a systematic evaluation. BMC Bioinform. 9(Suppl 5), S4 (2008)

    Article  Google Scholar 

  8. Caniza, H., Romero, A.E., Heron, S., Yang, H., Devoto, A., Frasca, M., Mesiti, M., Valentini, G., Paccanaro, A.: Gossto: a stand-alone application and a web tool for calculating semantic similarities on the gene ontology. Bioinformatics 30(15), 2235–2236 (2014)

    Article  Google Scholar 

  9. Nepomuceno, J.A., Troncoso, A., Aguilar-Ruiz, J.: Biclustering of gene expression data by correlation-based scatter search. BioData Min. 4(1), 3 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Spanish Ministry of Science and Innovation, Junta de Andalucía and University Pablo de Olavide for the financial support under projects TIN2011-28956-C02-02, TIN2014-55894-C2-R, P12-TIC-1728 and APPB813097, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Nepomuceno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nepomuceno, J.A., Troncoso, A., Nepomuceno-Chamorro, I.A., Aguilar–Ruiz, J.S. (2016). Biclustering of Gene Expression Data Based on SimUI Semantic Similarity Measure. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics