Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effective Similarity Search on Indoor Moving-Object Trajectories

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9643))

Included in the following conference series:

Abstract

In this paper, we propose a new approach to measuring the similarity among indoor moving-object trajectories. Particularly, we propose to measure indoor trajectory similarity based on spatial similarity and semantic pattern similarity. For spatial similarity, we propose to detect the critical points in trajectories and then use them to determine spatial similarity. This approach can lower the computational costs of similarity search. Moreover, it helps achieve a more effective measure of spatial similarity because it removes noisy points. For semantic pattern similarity, we propose to construct a hierarchical semantic pattern to capture the semantics of trajectories. This method makes it possible to capture the implicit semantic similarity among different semantic labels of locations, and enables more meaningful measures of semantic similarity among indoor trajectories. We conduct experiments on indoor trajectories, comparing our proposal with several popular methods. The results suggest that our proposal is effective and represents an improvement over existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dudas, P., Ghafourian, M., Karimi, H.: ONALIN: ontology and algorithm for indoor routing. In: Proceedings of MDM, pp. 720–725 (2009)

    Google Scholar 

  2. Jin, P., Zhang, L., Zhao, J., Zhao, L., Yue, L.: Semantics and modeling of indoor moving objects. Int. J. Multimedia Ubiquit. Eng. 7(2), 153–158 (2012)

    Google Scholar 

  3. Li, D., Lee, D.: A topology-based semantic location model for indoor applications. In: Proceedings of ACM GIS, pp. 1–10 (2008)

    Google Scholar 

  4. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. Mobile data management. In: Proceedings of MDM, pp. 17–24 (2008)

    Google Scholar 

  5. Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach. In: Advances in Knowledge Discovery and Data Mining, pp. 229–248. AAAI/MIT Press (1996)

    Google Scholar 

  6. Lin, B., Su, J.: One way distance: for shape based similarity search of moving object trajectories. GeoInformatica 12(2), 117–142 (2008)

    Article  Google Scholar 

  7. Boreczky, J.S., Rowe, L.A.: Comparison of video shot boundary detection techniques. J. Electron. Imaging 5(2), 122–128 (1996)

    Article  Google Scholar 

  8. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of ICDE, pp. 673–684 (2002)

    Google Scholar 

  9. Chen, L., Ozsu, M.T., Oria, V.: Robust and efficient similarity search for moving object trajectories. In: Proceedings of SIGMOD, pp. 491–502 (2005)

    Google Scholar 

  10. Wang, Y., Yu, G., Gu, Y., Yue, D., Zhang, T.: Efficient similarity query in RFID trajectory databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 620–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Yuan, Y., Raubal, M.: Measuring similarity of mobile phone user trajectories- a Spatio-temporal Edit Distance method. Int. J. Geogr. Inf. Sci. 28(3), 496–520 (2014)

    Article  Google Scholar 

  12. Pelekis, N., Kopanakis, I., Marketos, G.: Similarity search in trajectory databases. In: Proceedings of TIME, pp. 129–140 (2007)

    Google Scholar 

  13. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings of ICDE, pp. 816–825 (2007)

    Google Scholar 

  14. Dodge, S., Weibel, R., Laube, P.: Exploring movement-similarity analysis of moving objects. SIGSPATIAL Special (SIGSPATIAL) 1(3), 11–16 (2009)

    Article  Google Scholar 

  15. Kang, H.-Y., Kim, J.-S., Li, K.-J., Hwang, J.-R.: Similarity measures for trajectory of moving objects in cellular space. In: Proceedings of ACM SAC, pp. 1325–1330 (2009)

    Google Scholar 

  16. Ying, J.J., Lu, E.H., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Mining user similarity from semantic trajectories. In: Proc. of GIS-LBSN, pp. 19–26 (2010)

    Google Scholar 

  17. Ma, C., Lu, H., Shou, L., Chen, G.: KSQ: Top-k similarity query on uncertain trajectories. IEEE Trans. Knowl. Data Eng. 25(9), 2049–2062 (2013)

    Article  Google Scholar 

  18. Wang, H., Liu, K.: User oriented trajectory similarity search. In: Proceedings of UrbComp, pp. 103–110 (2012)

    Google Scholar 

  19. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of SIGMOD, pp. 593–604 (2007)

    Google Scholar 

  20. Huang, C., Jin, P., Wang, H., Wang, N., Wan, S., Yue, L.: IndoorSTG: a flexible tool to generate trajectory data for indoor moving objects. In: Proceedings of MDM, pp. 341–343 (2013)

    Google Scholar 

  21. Manning, C.D., Raghavanm, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  22. Schafer, M., Knapp, C., Chakraborty, S.: Automatic generation of topological indoor maps for real-time map-based localization and tracking. In: Proceedings of International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE CS (2011)

    Google Scholar 

  23. Zhang, D., Yang, L.T., Chen, M., Zhao, S., Guo, M., Zhang, Y.: Real-time locating systems using active RFID for internet of things. IEEE Syst. J. PP(99), 1–10 (2014)

    Google Scholar 

  24. Stojanović, D., Stojanović, N.: Indoor localization and tracking: methods, technologies and research challenges. Autom. Control Robot. 13(1), 57–72 (2014)

    Google Scholar 

  25. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Foundation of China under the grant number 61379037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiquan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jin, P., Cui, T., Wang, Q., Jensen, C.S. (2016). Effective Similarity Search on Indoor Moving-Object Trajectories. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, S., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9643. Springer, Cham. https://doi.org/10.1007/978-3-319-32049-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32049-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32048-9

  • Online ISBN: 978-3-319-32049-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics