Abstract
In this paper, we propose a new approach to measuring the similarity among indoor moving-object trajectories. Particularly, we propose to measure indoor trajectory similarity based on spatial similarity and semantic pattern similarity. For spatial similarity, we propose to detect the critical points in trajectories and then use them to determine spatial similarity. This approach can lower the computational costs of similarity search. Moreover, it helps achieve a more effective measure of spatial similarity because it removes noisy points. For semantic pattern similarity, we propose to construct a hierarchical semantic pattern to capture the semantics of trajectories. This method makes it possible to capture the implicit semantic similarity among different semantic labels of locations, and enables more meaningful measures of semantic similarity among indoor trajectories. We conduct experiments on indoor trajectories, comparing our proposal with several popular methods. The results suggest that our proposal is effective and represents an improvement over existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dudas, P., Ghafourian, M., Karimi, H.: ONALIN: ontology and algorithm for indoor routing. In: Proceedings of MDM, pp. 720–725 (2009)
Jin, P., Zhang, L., Zhao, J., Zhao, L., Yue, L.: Semantics and modeling of indoor moving objects. Int. J. Multimedia Ubiquit. Eng. 7(2), 153–158 (2012)
Li, D., Lee, D.: A topology-based semantic location model for indoor applications. In: Proceedings of ACM GIS, pp. 1–10 (2008)
Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. Mobile data management. In: Proceedings of MDM, pp. 17–24 (2008)
Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach. In: Advances in Knowledge Discovery and Data Mining, pp. 229–248. AAAI/MIT Press (1996)
Lin, B., Su, J.: One way distance: for shape based similarity search of moving object trajectories. GeoInformatica 12(2), 117–142 (2008)
Boreczky, J.S., Rowe, L.A.: Comparison of video shot boundary detection techniques. J. Electron. Imaging 5(2), 122–128 (1996)
Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of ICDE, pp. 673–684 (2002)
Chen, L., Ozsu, M.T., Oria, V.: Robust and efficient similarity search for moving object trajectories. In: Proceedings of SIGMOD, pp. 491–502 (2005)
Wang, Y., Yu, G., Gu, Y., Yue, D., Zhang, T.: Efficient similarity query in RFID trajectory databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 620–631. Springer, Heidelberg (2010)
Yuan, Y., Raubal, M.: Measuring similarity of mobile phone user trajectories- a Spatio-temporal Edit Distance method. Int. J. Geogr. Inf. Sci. 28(3), 496–520 (2014)
Pelekis, N., Kopanakis, I., Marketos, G.: Similarity search in trajectory databases. In: Proceedings of TIME, pp. 129–140 (2007)
Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings of ICDE, pp. 816–825 (2007)
Dodge, S., Weibel, R., Laube, P.: Exploring movement-similarity analysis of moving objects. SIGSPATIAL Special (SIGSPATIAL) 1(3), 11–16 (2009)
Kang, H.-Y., Kim, J.-S., Li, K.-J., Hwang, J.-R.: Similarity measures for trajectory of moving objects in cellular space. In: Proceedings of ACM SAC, pp. 1325–1330 (2009)
Ying, J.J., Lu, E.H., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Mining user similarity from semantic trajectories. In: Proc. of GIS-LBSN, pp. 19–26 (2010)
Ma, C., Lu, H., Shou, L., Chen, G.: KSQ: Top-k similarity query on uncertain trajectories. IEEE Trans. Knowl. Data Eng. 25(9), 2049–2062 (2013)
Wang, H., Liu, K.: User oriented trajectory similarity search. In: Proceedings of UrbComp, pp. 103–110 (2012)
Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of SIGMOD, pp. 593–604 (2007)
Huang, C., Jin, P., Wang, H., Wang, N., Wan, S., Yue, L.: IndoorSTG: a flexible tool to generate trajectory data for indoor moving objects. In: Proceedings of MDM, pp. 341–343 (2013)
Manning, C.D., Raghavanm, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Schafer, M., Knapp, C., Chakraborty, S.: Automatic generation of topological indoor maps for real-time map-based localization and tracking. In: Proceedings of International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE CS (2011)
Zhang, D., Yang, L.T., Chen, M., Zhao, S., Guo, M., Zhang, Y.: Real-time locating systems using active RFID for internet of things. IEEE Syst. J. PP(99), 1–10 (2014)
Stojanović, D., Stojanović, N.: Indoor localization and tracking: methods, technologies and research challenges. Autom. Control Robot. 13(1), 57–72 (2014)
Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartographer 10(2), 112–122 (1973)
Acknowledgement
This work is supported by the National Science Foundation of China under the grant number 61379037.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Jin, P., Cui, T., Wang, Q., Jensen, C.S. (2016). Effective Similarity Search on Indoor Moving-Object Trajectories. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, S., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9643. Springer, Cham. https://doi.org/10.1007/978-3-319-32049-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-32049-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32048-9
Online ISBN: 978-3-319-32049-6
eBook Packages: Computer ScienceComputer Science (R0)