Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Species Distribution Modeling via Spatial Bagging of Multiple Conditional Random Fields

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9643))

Included in the following conference series:

  • 1462 Accesses

Abstract

Satellite tracking technologies enable scientists to collect data of animal migrations and species habitats on a large scale. Modeling distributions of wild animals is of considerable use. It helps researchers to understand important ecological phenomena such as the spread of bird flu and climate changes. Species distribution modeling has been studied for a long time, however, most existing work provide solutions in a point-wise manner, ignoring the relevance between adjacent habitats, which may reflect an important dependency between nearby places. In this paper, we take the relevance into consideration, and then propose a novel method to model species habitats and predict possible distribution of wild animals by applying the Spatial Bagging of Multiple Conditional Random Fields(SBMCRFs) on remote-sensing data. To access the usability of our method, several experiments are implemented on a real world dataset of migratory birds from Qinghai Lake Reserve. The experiment results show that SBMCRFs outperforms the baselines significantly, and the relevance between nearby places is demonstrated to be an important factor in species distribution modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Busby, J.: BIOCLIM a bioclimate analysis and prediction system. Plant Prot. Q., 6 (1991)

    Google Scholar 

  • Carpenter, G., Gillison, A.N., Winter, J.: DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 2(6), 667–680 (1993)

    Article  Google Scholar 

  • Etherington, T.R., Ward, A.I., Smith, G.C., Pietravalle, S., Wilson, G.J.: Using the Mahalanobis distance statistic with unplanned presence only survey data for biogeographical models of species distribution and abundance: a case study of badger setts. J. Biogeogr. 36(5), 845–853 (2009)

    Article  Google Scholar 

  • Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees. J. Anim. Ecol. 77(4), 802–813 (2008)

    Article  Google Scholar 

  • Pencina, M.J., D’Agostino, R.B., Vasan, R.S.: Evaluating the added predictive ability of a new marker: from area unde the ROC curve to reclassification and beyond. Stat. Med. 27(2), 157–172 (2008)

    Article  MathSciNet  Google Scholar 

  • Zheng, V.W., Zheng, Y., Xie, X., Yang, Q. Collaborative location, activity recommendations with GPS history data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1029–1038. ACM (2010)

    Google Scholar 

  • Li, Z., Han, J., Ji, M., Tang, L.A., Yu, Y., Ding, B., Kays, R.: Movemine: mining moving object data for discovery of animal movement patterns. ACM Trans. Intell. Syst. Technol. (TIST) 2(4), 37 (2011)

    Google Scholar 

  • Tang, M., Zhou, Y., Li, J., Wang, W., Cui, P., Hou, Y., Yan, B.: Exploring the wild birds migration data for the disease spread study of H5N1: a clustering and association approach. Knowl. Inf. Syst. 27(2), 227–251 (2011)

    Article  Google Scholar 

  • Tang, M.J., Zhou, Y.C., Cui, P., Wang, W., Li, J., Zhang, H., Hou, Y.S., Yan, B.P.: Discovery of migration habitats and routes of wild bird species by clustering and association analysis. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS, vol. 5678, pp. 288–301. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Tang, M.J., Wang, W., Jiang, Y., Zhou, Y., Li, J., Cui, P., Liu, Y., Yan, B.: Birds bring flues? mining frequent and high weighted cliques from birds migration networks. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 359–369. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • Pearson, R.G.: Species distribution modeling for conservation educators and practitioners. Lessons in Conservation (LinC) Developing the capacity to sustain the earth’s diversity, 54 (2007)

    Google Scholar 

  • Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

    Article  Google Scholar 

  • Caruana, R., Elhawary, M., Munson, A., Riedewald, M., Sorokina, D., Fink, D., Hochachka, W.M., Kelling, S.: Mining citizen science data to predict orevalence of wild bird species. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 909–915. ACM, NewYork (2006)

    Google Scholar 

  • Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vision 68(2), 179–201 (2006)

    Article  Google Scholar 

  • Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields,: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 01, pp. 282–289. CA, USA, Morgan Kaufmann Publishers Inc, San Francisco (2001)

    Google Scholar 

  • Phillips, S.J., Anderson, R.P., Schapire, R.E.: Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3), 231–259 (2006)

    Article  Google Scholar 

  • Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B (Methodol.) 48(3), 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Natural Science Foundation of China (NSFC) under Grant No. 41371386 and 91224006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, D., Zhou, Y., Zhu, Y., Li, J. (2016). Species Distribution Modeling via Spatial Bagging of Multiple Conditional Random Fields. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, S., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9643. Springer, Cham. https://doi.org/10.1007/978-3-319-32049-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32049-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32048-9

  • Online ISBN: 978-3-319-32049-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics