Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Virtualizing CUDA Enabled GPGPUs on ARM Clusters

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics

Abstract

The acceleration of inexpensive ARM-based computing nodes with high-end CUDA enabled GPGPUs hosted on x86 64 machines using the GVirtuS general-purpose virtualization service is a novel approach to hierarchical parallelism. In this paper we draw the vision of a possible hierarchical remote workload distribution among different devices. Preliminary, but promising, performance evaluation data suggests that the developed technology is suitable for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Lauro R., Lucarelli, F., Montella, R.: SIaaS-sensing instrument as a service using cloud computing to turn physical instrument into ubiquitous service. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 861–862. IEEE (2012)

    Google Scholar 

  2. Duato, J., Pena, A.J., Silla, F., Mayo, R., Quintana-Ort, E.S.: rCUDA: reducing the number of GPU-based accelerators in high performance clusters. In: 2010 International Conference on High Performance Computing and Simulation (HPCS), pp. 224–231. IEEE, June 2010

    Google Scholar 

  3. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10. IEEE, November 2008

    Google Scholar 

  4. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU transparent virtualization component for high performance computing clouds. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 379–391. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Giunta, G., Montella, R., Laccetti, G., Isaila, F., Blas, J.G.: A GPU accelerated high performance cloud computing infrastructure for grid computing based virtual environmental laboratory. In: Constantinescu, Z. (ed.) Advances in Grid Computing, pp. 35–43. InTech (2011). ISBN: 978-953-307-301-9

    Google Scholar 

  6. Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ranganathan, P.: GViM: GPU-accelerated virtual machines. In: Proceedings of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing, pp. 17–24. ACM, March 2009

    Google Scholar 

  7. Yang, C.T., Huang, C.L., Lin, C.F.: Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters. Comput. Phys. Commun. 182(1), 266–269 (2011)

    Article  Google Scholar 

  8. Younge, A.J., Walters, J.P., Crago, S., Fox, G.C.: Evaluating GPU passthrough in Xen for high performance cloud computing. In: Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pp. 852–859. IEEE (2014)

    Google Scholar 

  9. Laccetti, G., Montella, R., Palmieri, C., Pelliccia, V.: The high performance internet of things: using GVirtuS to share high-end GPUs with ARM based cluster computing nodes. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 734–744. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Montella, R., Foster, I.: Using hybrid grid/cloud computing technologies for environmental data elastic storage, processing, and provisioning. In: Furht, B., Escalante, A. (eds.) Handbook of Cloud Computing, pp. 595–618. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-purpose virtualization service for HPC on cloud computing: an application to GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 740–749. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM clusters for the next generation of high performance cloud computing. Cluster Comput. 17(1), 139–152 (2014)

    Article  Google Scholar 

  13. Montella, R., Kelly, D., Xiong, W., Brizius, A., Elliott, J., Madduri, R., Maheshwari, K., Porter, C., Vilter, P., Wilde, M., Zhang, M., Foster, I.: FACE-IT: a science gateway for food security research. In: Concurrency and Computation: Practice and Experience (2015). doi:10.1002/cpe.3540

    Google Scholar 

  14. Pham, Q., Malik, T., Foster, I., Di Lauro, R., Montella, R.: SOLE: linking research papers with science objects. In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 203–208. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Shi, L., Chen, H., Sun, J., Li, K.: vCUDA: GPU-accelerated high-performance computing in virtual machines. IEEE Trans. Comput. 61(6), 804–816 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the Grant Agreement number: 644312 RAPID H2020-ICT-2014/H2020-ICT-2014-1Heterogeneous Secure Multi-level Remote Acceleration Service for Low-Power Integrated Systems and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Montella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Montella, R. et al. (2016). Virtualizing CUDA Enabled GPGPUs on ARM Clusters. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32152-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32151-6

  • Online ISBN: 978-3-319-32152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics