Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biomimetic Robots

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Biomimetic robot designs attempt to translate biological principles into engineered systems, replacing more classical engineering solutions in order to achieve a function observed in the natural system. This chapter will focus on mechanism design for bio-inspired robots that replicate key principles from nature with novel engineering solutions. The challenges of biomimetic design include developing a deep understanding of the relevant natural system and translating this understanding into engineering design rules. This often entails the development of novel fabrication and actuation to realize the biomimetic design.

This chapter consists of four sections. In Sect. 23.1, we will define what biomimetic design entails, and contrast biomimetic robots with bio-inspired robots. In Sect. 23.2, we will discuss the fundamental components for developing a biomimetic robot. In Sect. 23.3, we will review detailed biomimetic designs that have been developed for canonical robot locomotion behaviors including flapping-wing flight, jumping, crawling, wall climbing, and swimming. In Sect. 23.4, we will discuss the enabling technologies for these biomimetic designs including material and fabrication.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ACM:

active cord mechanism

BFA:

bending fluidic actuator

CF:

carbon fiber

CFRP:

carbon fiber reinforced prepreg

CPG:

central pattern generation

DC:

direct current

DOF:

degree of freedom

FDM:

fused deposition modeling

FRP:

fiber-reinforced prepreg

IPMC:

ionic polymer-metal composite

MAV:

micro aerial vehicles

MEMS:

microelectromechanical system

MFI:

micromechanical flying insect

MLR:

mesencephalic locomotor region

PDMS:

polydimethylsiloxane

PneuNet:

pneumatic network

RP:

rapid prototyping

SCM:

smart composite microstructure

SDM:

shape deposition manufacturing

SLA:

stereolithography

SLS:

selective laser sintering

SMA:

shape memory alloy

SSC:

smart soft composite

References

  1. R.J. Full, K. Autumn, J. Chung, A. Ahn: Rapid negotiation of rough terrain by the death-head cockroach, Am. Zool. 38(5), 81A (1998)

    Google Scholar 

  2. R.J. Full, M.S. Tu: Mechanics of a rapid running insect: Two-, four- and six-legged locomotion, J. Exp. Biol. 156, 215–231 (1991)

    Google Scholar 

  3. C.P. Ellington: The novel aerodynamics of insect flight: Applications to micro-air vehicles, J. Exp. Biol. 202, 3439–3448 (1999)

    Google Scholar 

  4. U. Saranli, M. Buehler, D.E. Koditschek: RHex: A simple and highly mobile hexapod robot, Int. J. Robotics Res. 20, 616–631 (2001)

    Google Scholar 

  5. J.M. Morrey, B. Lambrecht, A.D. Horchler, R.E. Ritzmann, R.D. Quinn: Highly mobile and robust small quadruped robots, Proc IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 1 (2003) pp. 82–87

    Google Scholar 

  6. J.E. Clark, J.G. Cham, S.A. Bailey, E.M. Froehlich, P.K. Nahata, R.J. Full, M.R. Cutkosky: Biomimetic design and fabrication of a hexapedal running robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2001) pp. 3643–3649

    Google Scholar 

  7. S. Kim, J.E. Clark, M.R. Cutkosky: iSprawl: design and tuning for high-speed autonomous open-loop running, Int. J. Robotics Res. 25, 903–912 (2006)

    Google Scholar 

  8. P. Birkmeyer, K. Peterson, R.S. Fearing: DASH: A dynamic 16g hexapedal robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 2683–2689

    Google Scholar 

  9. A.M. Hoover, E. Steltz, R.S. Fearing: RoACH: An autonomous 2.4g crawling hexapod robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 26–33

    Google Scholar 

  10. A.M. Hoover, S. Burden, X.-Y. Fu, S.S. Sastry, R.S. Fearing: Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot, Proc. IEEE/RAS Biomed. Robotics Biomech. (BioRob) (2010) pp. 869–876

    Google Scholar 

  11. A.O. Pullin, N.J. Kohut, D. Zarrouk, R.S. Fearing: Dynamic turning of 13 cm robot comparing tail and differential drive, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 5086–5093

    Google Scholar 

  12. A.T. Baisch, C. Heimlich, M. Karpelson, R.J. Wood: HAMR3: An autonomous 1.7g ambulatory robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 5073–5079

    Google Scholar 

  13. K.L. Hoffman, R.J. Wood: Turning gaits and optimal undulatory gaits for a modular centipede-inspired millirobot, Proc. IEEE/RAS Biomed. Robotics Biomech. (BioRob) (2012) pp. 1052–1059

    Google Scholar 

  14. R. Sahai, S. Avadhanula, R. Groff, E. Steltz, R. Wood, R.S. Fearing: Towards a 3g crawling robot through the integration of microrobot technologies, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 296–302

    Google Scholar 

  15. J.T. Watson, R.E. Ritzmann, S.N. Zill, A.J. Pollack: Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics, J. Comp. Physiol. A 188, 39–53 (2002)

    Google Scholar 

  16. A.T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, R.J. Wood: High speed locomotion for a quadrupedal microrobot, Int. J. Robotics Res. 33, 1063–1082 (2014)

    Google Scholar 

  17. D.W. Haldane, K.C. Peterson, F.L. Garcia Bermudez, R.S. Fearing: Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 3279–3286

    Google Scholar 

  18. A.S. Boxerbaum, H.J. Chiel, R.D. Quinn: A new theory and methods for creating peristaltic motion in a robotic platform, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1221–1227

    Google Scholar 

  19. S. Seok, C.D. Onal, K.-J. Cho, R.J. Wood, D. Rus, S. Kim: Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators, IEEE/ASME Trans. Mechatron. 18, 1–13 (2012)

    Google Scholar 

  20. A. Menciassi, D. Accoto, S. Gorini, P. Dario: Development of a biomimetic miniature robotic crawler, Auton. Robotics 21, 155–163 (2006)

    Google Scholar 

  21. K. Kotay, D. Rus: The inchworm robot: A multi-functional system, Auton. Robotics 8, 53–69 (2000)

    Google Scholar 

  22. N. Cheng, G. Ishigami, S. Hawthorne, H. Chen, M. Hansen, M. Telleria, R. Playter, K. Iagnemma: Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5207–5212

    Google Scholar 

  23. J.-S. Koh, K.-J. Cho: Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators, IEEE/ASME Trans. Mechatron. 18, 419–429 (2013)

    Google Scholar 

  24. T.L. Lam, Y. Xu: Climbing strategy for a flexible tree climbing robot – Treebot, IEEE Trans. Robotics 27, 1107–1117 (2011)

    Google Scholar 

  25. H.-T. Lin, G.G. Leisk, B. Trimmer: GoQBot: A caterpillar-inspired soft-bodied rolling robot, Bioinsp. Biomimet. 6, 026007 (2011)

    Google Scholar 

  26. S. Hirose, Y. Umetani: The development of soft gripper for the versatile robot hand, Mech. Mach. Theory 13, 351–359 (1978)

    Google Scholar 

  27. H. Ohno, S. Hirose: Design of slim slime robot and its gait of locomotion, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 707–715

    Google Scholar 

  28. C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R. Hatton, H. Choset: Design of a modular snake robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007) pp. 2609–2614

    Google Scholar 

  29. H. Yamada, S. Chigisaki, M. Mori, K. Takita, K. Ogami, S. Hirose: Development of amphibious snake-like robot ACM-R5, Proc. ISR (2005)

    Google Scholar 

  30. J. Gray: The mechanism of locomotion in snakes, J. Exp. Biol. 23, 101–120 (1946)

    Google Scholar 

  31. G.S. Miller: The motion dynamics of snakes and worms, ACM Siggraph Comput. Graph. 22, 169–173 (1988)

    Google Scholar 

  32. Z. Bayraktaroglu: Snake-like locomotion: Experimentations with a biologically inspired wheel-less snake robot, Mech. Mach. Theory 44, 591–602 (2009)

    MATH  Google Scholar 

  33. D.L. Hu, J. Nirody, T. Scott, M.J. Shelley: The mechanics of slithering locomotion, Proc. Natl. Acad. Sci. 106, 10081–10085 (2009)

    Google Scholar 

  34. Z. Wang, S. Ma, B. Li, Y. Wang: Experimental study of passive creeping for a snake-like robot, Proc. IEEE/ICME Int. Conf. Complex Med. Eng. (CME) (2011) pp. 382–387

    Google Scholar 

  35. J.J. Socha, T. O'Dempsey, M. LaBarbera: A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi J. Exp. Biol. 208, 1817–1833 (2005)

    Google Scholar 

  36. R.L. Hatton, H. Choset: Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction, Auton. Robotics 28, 271–281 (2010)

    Google Scholar 

  37. K.J. Dowling: Limbless Locomotion: Learning to Crawl with a Snake Robot (NASA, Pittsburgh 1996)

    Google Scholar 

  38. S. Hirose, M. Mori: Biologically inspired snake-like robots, IEEE Int. Conf. Robotics Biomimet. (ROBIO) (2004) pp. 1–7

    Google Scholar 

  39. C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson, M. Tesch, H. Choset: Design and architecture of the unified modular snake robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 4347–4354

    Google Scholar 

  40. K.-H. Low: Industrial Robotics: Programming, Simulation and Applications (InTech, Rijeka 2007)

    Google Scholar 

  41. A.J. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen: From swimming to walking with a salamander robot driven by a spinal cord model, Science 315, 1416–1420 (2007)

    Google Scholar 

  42. R. Crespi, K. Karakasiliotis, A. Guignard, A.J. Ijspeert: 1 Salamandra robotica II: An amphibious robot to study salamander-like swimming and walking gaits, IEEE Trans. Robotics 29, 308–320 (2013)

    Google Scholar 

  43. S. Hirose, H. Yamada: Snake-like robots [Tutorial], IEEE Robotics Autom. Mag. 16, 88–98 (2009)

    Google Scholar 

  44. N. Kamamichi, M. Yamakita, K. Asaka, Z.-W. Luo: A snake-like swimming robot using IPMC actuator/sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1812–1817

    Google Scholar 

  45. P. Liljebäck, K.Y. Pettersen, O. Stavdahl, J.T. Gravdahl: Snake robot locomotion in environments with obstacles, IEEE/ASME Trans. Mechatron. 17, 1158–1169 (2012)

    MATH  Google Scholar 

  46. P. Liljebäck, K.Y. Pettersen, Ø. Stavdahl, J.T. Gravdahl: A review on modelling, implementation, and control of snake robots, Robotics Auton. Syst. 60, 29–40 (2012)

    MATH  Google Scholar 

  47. M.H. Dickinson: Wing rotation and the aerodynamic basis of insect flight, Science 284, 1954–1960 (1999)

    Google Scholar 

  48. M.H. Dickinson: How animals move: An integrative view, Science 288, 100–106 (2000)

    Google Scholar 

  49. G.C.H.E. de Croon, K.M.E. de Clercq, R. Ruijsink, B. Remes, C. de Wagter: Design, aerodynamics, and vision-based control of the DelFly, Int. J. Micro Air Veh. 1(2), 71–97 (2009)

    Google Scholar 

  50. R.J. Wood, S. Avadhanula, R. Sahai, E. Steltz, R.S. Fearing: Microrobot design using fiber reinforced composites, J. Mech. Des. 130, 052304 (2008)

    Google Scholar 

  51. M. Keennon, K. Klingebiel, H. Won, A. Andriukov: Development of the nano hummingbird: A tailless flapping wing micro air vehicle, AIAA Aerospace Sci. Meet. (2012)

    Google Scholar 

  52. R.J. Wood: The first takeoff of a biologically inspired at-scale robotic insect, IEEE Trans. Robotics 24, 341–347 (2008)

    Google Scholar 

  53. K. Peterson, P. Birkmeyer, R. Dudley, R.S. Fearing: A wing-assisted running robot and implications for avian flight evolution, Bioinsp. Biomimet. 6, 046008 (2011)

    Google Scholar 

  54. S. Hirose, A. Nagakubo, R. Toyama: Machine that can walk and climb on floors, walls and ceilings, Adv. Robotics ICAR '05. Proc. (1991) pp. 753–758

    Google Scholar 

  55. S. Kim, A.T. Asbeck, M.R. Cutkosky, W.R. Provancher: SpinybotII: Climbing hard walls with compliant microspines, Adv. Robotics ICAR '05. Proc. (2005) pp. 601–606

    Google Scholar 

  56. M. Spenko, G.C. Haynes, J. Saunders, M.R. Cutkosky, A.A. Rizzi, R.J. Full, D.E. Koditschek: Biologically inspired climbing with a hexapedal robot, J. Field Robotics 25, 223–242 (2008)

    Google Scholar 

  57. K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky: Frictional adhesion: A new angle on gecko attachment, J. Exp. Biol. 209, 3569–3579 (2006)

    Google Scholar 

  58. S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M.R. Cutkosky: Smooth vertical surface climbing with directional adhesion, IEEE Trans. Robotics 24, 65–74 (2008)

    Google Scholar 

  59. M. Minor, H. Dulimarta, G. Danghi, R. Mukherjee, R.L. Tummala, D. Aslam: Design, implementation, and evaluation of an under-actuated miniature biped climbing robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 1999–2005

    Google Scholar 

  60. D. Longo, G. Muscato: The Alicia 3 climbing robot: A three-module robot for automatic wall inspection, IEEE Robotics Autom. Mag. 13, 42–50 (2006)

    Google Scholar 

  61. M. Armada, M. Prieto, T. Akinfiev, R. Fernández, P. González, E. García, H. Montes, S. Nabulsi, R. Ponticelli, J. Sarriá, J. Estremera, S. Ros, J. Grieco, G. Fernández: On the design and development of climbing and walking robots for the maritime industries, J. Marit. Res. 2, 9–32 (2005)

    Google Scholar 

  62. G.C. Haynes, A. Khripin, G. Lynch, J. Amory, A. Saunders, A.A. Rizzi, D.E. Koditschek: Rapid pole climbing with a quadrupedal robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009) pp. 2767–2772

    Google Scholar 

  63. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full: Adhesive force of a single gecko foot-hair, Nature 405, 681–685 (2000)

    Google Scholar 

  64. G.A. Lynch, J.E. Clark, P.-C. Lin, D.E. Koditschek: A bioinspired dynamical vertical climbing robot, Int. J. Robotics Res. 31, 974–996 (2012)

    Google Scholar 

  65. J. Clark, D. Goldman, P.-C. Lin, G. Lynch, T. Chen, H. Komsuoglu, R.J. Full, D. Koditschek: Design of a bio-inspired dynamical vertical climbing robot, Robotics Sci. Syst. (2007)

    Google Scholar 

  66. P. Birkmeyer, A.G. Gillies, R.S. Fearing: Dynamic climbing of near-vertical smooth surfaces, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 286–292

    Google Scholar 

  67. K.A. Daltorio, T.E. Wei, S.N. Gorb, R.E. Ritzmann, R.D. Quinn: Passive foot design and contact area analysis for climbing mini-whegs, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1274–1279

    Google Scholar 

  68. O. Unver, A. Uneri, A. Aydemir, M. Sitti: Geckobot: A gecko inspired climbing robot using elastomer adhesives, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2329–2335

    Google Scholar 

  69. S.A. Bailey, J.G. Cham, M.R. Cutkosky, R.J. Full: A biomimetic climbing robot based on the gecko, J. Bionic Eng. 3, 115–125 (2006)

    Google Scholar 

  70. M.P. Murphy, C. Kute, Y. Mengüç, M. Sitti: Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives, Int. J. Robotics Res. 30, 118–133 (2011)

    Google Scholar 

  71. D.S. Barrett: Propulsive Efficiency of a Flexible Hull Underwater Vehicle, Ph.D. Thesis (MIT, Cambridge 1996)

    Google Scholar 

  72. J. Liu, H. Hu: Biological inspiration: From carangiform fish to multi-joint robotic fish, J. Bionic Eng. 7, 35–48 (2010)

    Google Scholar 

  73. G.-H. Yang, K.-S. Kim, S.-H. Lee, C. Cho, Y. Ryuh: Design and control of 3-DOF robotic fish `ICHTHUS V5, Lect. Not. Comp. Sci. 8103, 310–319 (2013)

    Google Scholar 

  74. K. Low: Modelling and parametric study of modular undulating fin rays for fish robots, Mech. Mach. Theory 44, 615–632 (2009)

    MATH  Google Scholar 

  75. A.D. Marchese, C.D. Onal, D. Rus: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robotics 1, 75–87 (2014)

    Google Scholar 

  76. Z. Chen, T.I. Um, H. Bart-Smith: Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles, Int. J. Smart Nano Mater. 3, 296–308 (2012)

    Google Scholar 

  77. H.-J. Kim, S.-H. Song, S.-H. Ahn: A turtle-like swimming robot using a smart soft composite (SSC) structure, Smart Mater. Struct. 22, 014007 (2013)

    Google Scholar 

  78. C.J. Esposito, J.L. Tangorra, B.E. Flammang, G.V. Lauder: A robotic fish caudal fin: Effects of stiffness and motor program on locomotor performance, J. Exp. Biol. 215, 56–67 (2012)

    Google Scholar 

  79. H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, R. Kornbluh: Electroadhesive robots—wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 3028–3033

    Google Scholar 

  80. P. Birkmeyer, A.G. Gillies, R.S. Fearing: CLASH: Climbing vertical loose cloth, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 5087–5093

    Google Scholar 

  81. K. Streitlien, G.S. Triantafyllou, M.S. Triantafyllou: Efficient foil propulsion through vortex control, AIAA J. 34, 2315–2319 (1996)

    MATH  Google Scholar 

  82. H. Morikawa, S. Nakao, S.-I. Kobayashi: Experimental study on oscillating wing for propulsor with bending mechanism modeled on caudal muscle-skeletal structure of tuna, Jap. Soc. Mech. Eng. C 44, 1117–1124 (2001)

    Google Scholar 

  83. R. Fan, J. Yu, L. Wang, G. Xie, Y. Fang, Y. Hu: Optimized design and implementation of biomimetic robotic dolphin, IEEE Int. Conf. Robotics Biomimet. (ROBIO) (2005) pp. 484–489

    Google Scholar 

  84. T. Salumäe, M. Kruusmaa: A flexible fin with bio-inspired stiffness profile and geometry, J. Bionic Eng. 8, 418–428 (2011)

    Google Scholar 

  85. P.V. y Alvarado, K. Youcef-Toumi: Design of machines with compliant bodies for biomimetic locomotion in liquid environments, J. Dyn. Syst. Meas. Contr. 128, 3–13 (2006)

    Google Scholar 

  86. U. Scarfogliero, C. Stefanini, P. Dario: Design and development of the long-jumping, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 467–472

    Google Scholar 

  87. M. Kovac, M. Fuchs, A. Guignard, J.-C. Zufferey, D. Floreano: A miniature 7g jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 373–378

    Google Scholar 

  88. Y.-J. Park, T.M. Huh, D. Park, K.-J. Cho: Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot, Bioinsp. Biomimet. 9, 036002 (2014)

    Google Scholar 

  89. W.-S. Chu, K.-T. Lee, S.-H. Song, M.-W. Han, J.-Y. Lee, H.-S. Kim, M.S. Kim, Y.J. Park, K.J. Cho, S.H. Anh: Review of biomimetic underwater robots using smart actuators, Int. J. Prec. Eng. Manuf. 13, 1281–1292 (2012)

    Google Scholar 

  90. Z. Wang, G. Hang, Y. Wang, J. Li, W. Du: Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion, Smart Mater. Struc. 17, 025039 (2008)

    Google Scholar 

  91. G.V. Lauder, J. Lim, R. Shelton, C. Witt, E. Anderson, J.L. Tangorra: Robotic models for studying undulatory locomotion in fishes, Mar. Technol. Soc. J. 45, 41–55 (2011)

    Google Scholar 

  92. F. Li, G. Bonsignori, U. Scarfogliero, D. Chen, C. Stefanini, W. Liu, P. Dario, F. Xin: Jumping mini-robot with bio-inspired legs, IEEE Int. Conf. Robotics Biomimet. (ROBIO) (2009) pp. 933–938

    Google Scholar 

  93. B.G.A. Lambrecht, A.D. Horchler, R.D. Quinn: A small, insect-inspired robot that runs and jumps, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1240–1245

    Google Scholar 

  94. J. Zhao, J. Xu, B. Gao, N. Xi, F.J. Cintrón, M.W. Mutka, X. Li: MSU Jumper: A single-motor-actuated miniature steerable jumping robot, IEEE Trans. Robotics 29, 602–614 (2013)

    Google Scholar 

  95. J. Zhao, W. Yan, N. Xi, M.W. Mutka, L. Xiao: A miniature 25 grams running and jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014)

    Google Scholar 

  96. R. Armour, K. Paskins, A. Bowyer, J. Vincent, W. Megill: Jumping robots: A biomimetic solution to locomotion across rough terrain, Bioinsp. Biomimet. 2, S65–S82 (2007)

    Google Scholar 

  97. M. Noh, S.-W. Kim, S. An, J.-S. Koh, K.-J. Cho: Flea-inspired catapult mechanism for miniature jumping robots, IEEE Trans. Robotics 28, 1007–1018 (2012)

    Google Scholar 

  98. J.-S. Koh, S.-P. Jung, M. Noh, S.-W. Kim, K.-J. Cho: Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 26–31

    Google Scholar 

  99. J.-S. Koh, S.-P. Jung, R.J. Wood, K.-J. Cho: A jumping robotic insect based on a torque reversal catapult mechanism, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 3796–3801

    Google Scholar 

  100. A. Yamada, M. Watari, H. Mochiyama, H. Fujimoto: An asymmetric robotic catapult based on the closed elastica for jumping robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 232–237

    Google Scholar 

  101. A.P. Gerratt, S. Bergbreiter: Incorporating compliant elastomers for jumping locomotion in microrobots, Smart Mater. Struct. 22, 014010 (2013)

    Google Scholar 

  102. R. Niiyama, A. Nagakubo, Y. Kuniyoshi: Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2546–2551

    Google Scholar 

  103. E.W. Hawkes, E.V. Eason, A.T. Asbeck, M.R. Cutkosky: The gecko's toe: Scaling directional adhesives for climbing applications, IEEE/ASME Trans. Mechatron. 18, 518–526 (2013)

    Google Scholar 

  104. E.W. Hawkes, D.L. Christensen, E.V. Eason, M.A. Estrada, M. Heverly, E. Hilgemann, J. Hao, M.T. Pope, A. Parness, M.R. Cutkosky: Dynamic surface grasping with directional adhesion, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 5487–5493

    Google Scholar 

  105. A.L. Desbiens, A.T. Asbeck, M.R. Cutkosky: Landing, perching and taking off from vertical surfaces, Int. J. Robotics Res. 30, 355–370 (2011)

    Google Scholar 

  106. A. Parness, M. Frost, N. Thatte, J.P. King, K. Witkoe, M. Nevarez, M. Garrett, H. Aghazarian, B. Kennedy: Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers, J. Field Robotics 30, 897–915 (2013)

    Google Scholar 

  107. B.A. Trimmer, A.E. Takesian, B.M. Sweet, C.B. Rogers, D.C. Hake, D.J. Rogers: Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots, 7th Int. Symp. Technol. Mine Problem (2006) pp. 1–10

    Google Scholar 

  108. G.-P. Jung, J.-S. Koh, K.-J. Cho: Underactuated adaptive gripper using flexural buckling, IEEE Trans. Robotics 29(6), 1396 (2013)

    Google Scholar 

  109. M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario: An octopus-bioinspired solution to movement and manipulation for soft robots, Bioinsp. Biomimet. 6, 036002 (2011)

    Google Scholar 

  110. S.-W. Kim, J.-S. Koh, J.-G. Lee, J. Ryu, M. Cho, K.-J. Cho: Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface, Bioinsp. Biomimet. 9, 036004 (2014)

    Google Scholar 

  111. C.E. Doyle, J.J. Bird, T.A. Isom, J.C. Kallman, D.F. Bareiss, D.J. Dunlop, R.J. King, J.J. Abbott, M.A. Minor: An avian-inspired passive mechanism for quadrotor perching, IEEE/ASME Trans. Mechatron. 18, 506–517 (2013)

    Google Scholar 

  112. M. Kovač, J. Germann, C. Hürzeler, R.Y. Siegwart, D. Floreano: A perching mechanism for micro aerial vehicles, J. Micro-Nano Mechatron. 5, 77–91 (2009)

    Google Scholar 

  113. R. Merz, F. Prinz, K. Ramaswami, M. Terk, L. Weiss: Shape deposition manufacturing, Proc. Solid Freeform Fabric. Symp., University of Texas at Austin (1994) pp. 1–8

    Google Scholar 

  114. S.A. Bailey, J.G. Cham, M.R. Cutkosky, R.J. Full: Biomimetic robotic mechanisms via shape deposition manufacturing, Robotics Res. Int. Symp. (2000) pp. 403–410

    Google Scholar 

  115. X. Li, A. Golnas, F.B. Prinz: Shape deposition manufacturing of smart metallic structures with embedded sensors, SPIE Proc. 7th Annu. Int. Symp. Smart Struct. Mater. (International Society for Optics and Photonics, Bellingham 2000) pp. 160–171

    Google Scholar 

  116. K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mater. Res. 47, 324–335 (1999)

    Google Scholar 

  117. J.G. Cham, S.A. Bailey, J.E. Clark, R.J. Full, M.R. Cutkosky: Fast and robust: Hexapedal robots via shape deposition manufacturing, Int. J. Robotics Res. 21, 869–882 (2002)

    Google Scholar 

  118. A.M. Dollar, R.D. Howe: A robust compliant grasper via shape deposition manufacturing, IEEE/ASME Trans. Mechatron. 11, 154–161 (2006)

    Google Scholar 

  119. M. Binnard, M.R. Cutkosky: Design by composition for layered manufacturing, J. Mech. Des. 122, 91–101 (2000)

    Google Scholar 

  120. Y.-L. Park, K. Chau, R.J. Black, M.R. Cutkosky: Force sensing robot fingers using embedded fiber Bragg grating sensors and shape deposition manufacturing, IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1510–1516

    Google Scholar 

  121. D. Shin, I. Sardellitti, Y.-L. Park, O. Khatib, M. Cutkosky: Design and control of a bio-inspired human-friendly robot, Int. J. Robotics Res. 29, 571–584 (2010)

    Google Scholar 

  122. R.S. Fearing, K.H. Chiang, M.H. Dickinson, D.L. Pick, M. Sitti, J. Yan: Wing transmission for a micromechanical flying insect, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2000) pp. 1509–1516

    Google Scholar 

  123. J. Yan, R.J. Wood, S. Avadhanula, M. Sitti, R.S. Fearing: Towards flapping wing control for a micromechanical flying insect, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3901–3908

    Google Scholar 

  124. R.J. Wood, S. Avadhanula, M. Menon, R.S. Fearing: Microrobotics using composite materials: The micromechanical flying insect thorax, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2003) pp. 1842–1849

    Google Scholar 

  125. K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood: Controlled flight of a biologically inspired, insect-scale robot, Science 340, 603–607 (2013)

    Google Scholar 

  126. J. Whitney, P. Sreetharan, K. Ma, R. Wood: Pop-up book MEMS, J. Micromech. Microeng. 21, 115021 (2011)

    Google Scholar 

  127. P.S. Sreetharan, J.P. Whitney, M.D. Strauss, R.J. Wood: Monolithic fabrication of millimeter-scale machines, J. Micromech. Microeng. 22, 055027 (2012)

    Google Scholar 

  128. C. Majidi: Soft robotics: A perspective – Current trends and prospects for the future, Soft Robotics 1, 5–11 (2013)

    Google Scholar 

  129. Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Google Scholar 

  130. F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides: Soft robotics for chemists, Angew. Chem. 123, 1930–1935 (2011)

    Google Scholar 

  131. R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides: Multigait soft robot, Proc. Natl. Acad. Sci. 108, 20400–20403 (2011)

    Google Scholar 

  132. B.C.-M. Chang, J. Berring, M. Venkataram, C. Menon, M. Parameswaran: Bending fluidic actuator for smart structures, Smart Mater. Struct. 20, 035012 (2011)

    Google Scholar 

  133. B. Chang, A. Chew, N. Naghshineh, C. Menon: A spatial bending fluidic actuator: Fabrication and quasi-static characteristics, Smart Mater. Struct. 21, 045008 (2012)

    Google Scholar 

  134. B. Finio, R. Shepherd, H. Lipson: Air-Powered Soft Robots for K-12 Classrooms, IEEE Proc. Integr. STEM Edu. Conf. (ISEC) (2013) pp. 1–6

    Google Scholar 

  135. S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski, G.M. Whitesides: Camouflage and display for soft machines, Science 337, 828–832 (2012)

    Google Scholar 

  136. R.V. Martinez, J.L. Branch, C.R. Fish, L. Jin, R.F. Shepherd, R. Nunes, Z. Suo, G.M. Whitesides: Robotic tentacles with three-dimensional mobility based on flexible elastomers, Adv. Mater. 25, 205–212 (2013)

    Google Scholar 

  137. R.V. Martinez, C.R. Fish, X. Chen, G.M. Whitesides: Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators, Adv. Funct. Mater. 22, 1376–1384 (2012)

    Google Scholar 

  138. S.W. Kwok, S.A. Morin, B. Mosadegh, J.H. So, R.F. Shepherd, R.V. Martinez, B. Smith, F.C. Simeone, A.A. Stokes, G.M. Whitesides: Magnetic assembly of soft robots with hard components, Adv. Funct. Mater. 24, 2180–2187 (2013)

    Google Scholar 

  139. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whitesides: Pneumatic networks for soft robotics that actuate rapidly, Adv. Funct. Mater. 24, 2163–2170 (2013)

    Google Scholar 

  140. M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, C. Laschi: Design concept and validation of a robotic arm inspired by the octopus, Mater. Sci. Eng. C 31, 1230–1239 (2011)

    Google Scholar 

  141. T. Umedachi, V. Vikas, B.A. Trimmer: Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 4590–4595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Jin Cho .

Editor information

Editors and Affiliations

Video-References

Video-References

:

The long-jumping robot ’Grillo’ available from http://handbookofrobotics.org/view-chapter/23/videodetails/278

:

A miniature 7 g jumping robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/279

:

A single motor actuated miniature steerable jumping robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/280

:

The Flea: Flea-inpired light jumping robot using elastic catapultwith active storage and release mechanism available from http://handbookofrobotics.org/view-chapter/23/videodetails/281

:

Jumping & landing robot ’MOWGLI’ available from http://handbookofrobotics.org/view-chapter/23/videodetails/285

:

RoACH: A 2.4 g, untethered crawling hexapod robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/286

:

A new form of peristaltic locomotion in a robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/287

:

Meshworm available from http://handbookofrobotics.org/view-chapter/23/videodetails/288

:

Treebot: Autonomous tree climbing by tactile sensing available from http://handbookofrobotics.org/view-chapter/23/videodetails/289

:

Omegabot : Inchworm inspired robot climbing available from http://handbookofrobotics.org/view-chapter/23/videodetails/290

:

GoQBot: Insanely fast robot caterpillar available from http://handbookofrobotics.org/view-chapter/23/videodetails/291

:

SpinybotII: Climbing hard walls with compliant microspines available from http://handbookofrobotics.org/view-chapter/23/videodetails/388

:

Smooth vertical surface climbing with directional adhesion available from http://handbookofrobotics.org/view-chapter/23/videodetails/389

:

Biologically inspired climbing with a hexapedal robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/390

:

CLASH: Climbing vertical loose cloth available from http://handbookofrobotics.org/view-chapter/23/videodetails/391

:

Torque control strategies for snake robots available from http://handbookofrobotics.org/view-chapter/23/videodetails/392

:

Snake robot climbs a tree available from http://handbookofrobotics.org/view-chapter/23/videodetails/393

:

Snake robot in the water available from http://handbookofrobotics.org/view-chapter/23/videodetails/394

:

Salamandra Robotica II robot walking and swimming available from http://handbookofrobotics.org/view-chapter/23/videodetails/395

:

ACM-R5H available from http://handbookofrobotics.org/view-chapter/23/videodetails/397

:

Pop-up fabrication of the Harvard monolithic bee (Mobee) available from http://handbookofrobotics.org/view-chapter/23/videodetails/398

:

Controlled flight of a biologically-inspired, insect-scale robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/399

:

Rhex the parkour robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/400

:

Mini whegs available from http://handbookofrobotics.org/view-chapter/23/videodetails/401

:

Robot dragonfly DelFly explorer flies autonomously available from http://handbookofrobotics.org/view-chapter/23/videodetails/402

:

Standford Sprawl and iSprawl available from http://handbookofrobotics.org/view-chapter/23/videodetails/403

:

DASH: Resilient high-speed 16 g hexapedal robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/405

:

HAMR3: An autonomous 1.7 g ambulatory robot available from http://handbookofrobotics.org/view-chapter/23/videodetails/406

:

Undulatory gaits in a centipede millirobot available from http://handbookofrobotics.org/view-chapter/23/videodetails/407

:

VelociRoACH available from http://handbookofrobotics.org/view-chapter/23/videodetails/408

:

Underactuated adaptive gripper using flexural buckling available from http://handbookofrobotics.org/view-chapter/23/videodetails/409

:

Flytrap-inspired bi-stable gripper available from http://handbookofrobotics.org/view-chapter/23/videodetails/410

:

An octopus-bioinspired solution to movement and manipulation for soft robots available from http://handbookofrobotics.org/view-chapter/23/videodetails/411

:

Landing and perching UAV available from http://handbookofrobotics.org/view-chapter/23/videodetails/412

:

Dynamic surface grasping with directional adhesion available from http://handbookofrobotics.org/view-chapter/23/videodetails/413

:

Gravity-independent rock-climbing robot and a sample acquisition toolwith microspine grippers available from http://handbookofrobotics.org/view-chapter/23/videodetails/414

:

Avian-inspired perching mechanism with UAV available from http://handbookofrobotics.org/view-chapter/23/videodetails/415

:

A perching mechanism for micro aerial vehicles available from http://handbookofrobotics.org/view-chapter/23/videodetails/416

:

G9 series robotic fish available from http://handbookofrobotics.org/view-chapter/23/videodetails/431

:

Ichthus available from http://handbookofrobotics.org/view-chapter/23/videodetails/432

:

Autonomous, self-contained soft robotic fish available from http://handbookofrobotics.org/view-chapter/23/videodetails/433

:

Robotic Ray takes a swim available from http://handbookofrobotics.org/view-chapter/23/videodetails/434

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, KJ., Wood, R. (2016). Biomimetic Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics