Abstract
I will survey algorithms for testing whether two point sets are congruent, that is, equal up to an Euclidean isometry. I will introduce the important techniques for congruence testing, namely dimension reduction and pruning, or more generally, condensation. I will illustrate these techniques on the three-dimensional version of the problem, and indicate how they lead for the first time to an algorithm for four dimensions with near-linear running time (joint work with Heuna Kim). On the way, we will encounter some beautiful and symmetric mathematical structures, like the regular polytopes, and Hopf-fibrations of the three-dimensional sphere in four dimensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akutsu, T.: On determining the congruence of point sets in \(d\) dimensions. Comput. Geom.: Theory Appl. 4(9), 247–256 (1998)
Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discrete Comput. Geom. 3(1), 237–256 (1988). http://dx.doi.org/10.1007/BF02187910
Atkinson, M.D.: An optimal algorithm for geometrical congruence. J. Algorithms 8(2), 159–172 (1987). http://dx.doi.org/10.1016/0196-6774(87)90036-8
Brass, P., Knauer, C.: Testing the congruence of \(d\)-dimensional point sets. Int. J. Comput. Geom. Appl. 12(1–2), 115–124 (2002). http://dx.doi.org/10.1142/S0218195902000761
Bentley, J.L., Shamos, M.I.: Divide-and-conquer in multidimensional space. In: Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, STOC 1976, pp. 220–230. ACM, New York (1976). http://doi.acm.org/10.1145/800113.803652
Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in grassmannian spaces. Exp. Math. 5, 139–159 (1996). https://projecteuclid.org/euclid.em/1047565645
Conway, J.H., Smith, D.A.: On Quaternions and Octonions. A K Peters, Natick (2003)
Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications, New York (1973)
Hopf, H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104, 637–665 (1931). http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002274760
Iwanowski, S.: Testing approximate symmetry in the plane is NP-hard. Theor. Comput. Sci. 80(2), 227–262 (1991). http://dx.doi.org/10.1016/0304-3975(91)90389-J
Kim, H., Rote, G.: Congruence testing of point sets in 4-space. In: Proceedings of the 32st International Symposium on Computational Geometry (SoCG 2016), LIPIcs (2016, to appear)
Manacher, G.: An application of pattern matching to a problem in geometrical complexity. Inf. Process. Lett. 5(1), 6–7 (1976). http://dx.doi.org/10.1016/0020-0190(76)90092-2
Sugihara, K.: An \(n \log n\) algorithm for determining the congruity of polyhedra. J. Comput. Syst. Sci. 29(1), 36–47 (1984). http://dx.doi.org/10.1016/0022-0000(84)90011-4
Threlfall, W., Seifert, H.: Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. Math. Ann. 104(1), 1–70 (1931). http://dx.doi.org/10.1007/BF01457920
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Rote, G. (2016). Congruence Testing of Point Sets in Three and Four Dimensions. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-32859-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32858-4
Online ISBN: 978-3-319-32859-1
eBook Packages: Computer ScienceComputer Science (R0)