Abstract
Electrochemotherapy and irreversible electroporation can be used to treat deep-seated tumors. Key to treatment success is ensuring that the entirety of the target tumor is covered with electric fields of sufficient strength during the treatment. Treatment planning using numerical methods has long been established in radiotherapy, and this chapter presents the necessary tools to realize a similar treatment planning framework also for electrochemotherapy and irreversible electroporation. Treatment planning consists of identifying the target tumor and surrounding tissues on tomographic medical images. This reconstruction can be used to build a numerical model of the region of interest with by assigning correct conductivities to each tissue in the treatment zone. Using the finite element method, electric fields for a given electrode configuration can be determined. By coupling the numerical model of electroporation with appropriate optimization algorithms, the voltage to be delivered to each electrode pair can be determined and the positions of electrodes can be adjusted to ensure successful coverage of the target volume. Possible approaches to execute the treatment according to the prepared treatment plan are also discussed at the end of the chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alnæs M, Blechta J, Hake J, et al (2015) The FEniCS project version 1.5. doi:10.11588/ans.2015.100.20553
Aström M, Zrinzo LU, Tisch S et al (2009) Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput 47:21–28. doi:10.1007/s11517-008-0411-2
Bianchi G, Campanacci L, Ronchetti M, Donati D (2016) Electrochemotherapy in the treatment of bone metastases: a phase II trial. World J Surg 40:3088–3094. doi:10.1007/s00268-016-3627-6
Bujold A, Craig T, Jaffray D, Dawson LA (2012) Image-guided radiotherapy: has it influenced patient outcomes? Semin Radiat Oncol 22:50–61. doi:10.1016/j.semradonc.2011.09.001
Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16. doi:10.1186/1475-925X-12-16
Davalos R, Mir L, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231. doi:10.1007/s10439-005-8981-8
Denzi A, Strigari L, Di Filippo F et al (2015) Modeling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case. Biomed Eng Online 14(Suppl 3):S1. doi:10.1186/1475-925X-14-S3-S1
Edhemovic I, Brecelj E, Gasljevic G et al (2014) Intraoperative electrochemotherapy of colorectal liver metastases. J Surg Oncol. doi:10.1002/jso.23625
Gabriel C, Peyman A, Grant E (2009) Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol 54:4863–4878. doi:10.1088/0031-9155/54/16/002
Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269
Garcia PA, Davalos RV, Miklavcic D (2014) A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 9:e103083. doi:10.1371/journal.pone.0103083
Garcia PA, Rossmeisl JH Jr, Neal RE 2nd et al (2011) A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 10:34. doi:10.1186/1475-925X-10-34
Gasbarrini A, Campos WK, Campanacci L, Boriani S (2015) Electrochemotherapy to metastatic spinal melanoma: a novel treatment of spinal metastasis? Spine 40:E1340–E1346. doi:10.1097/BRS.0000000000001125
Haemmerich D, Schutt D, Wright A et al (2009) Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiol Meas 30:459–466. doi:10.1088/0967-3334/30/5/003
Hecht F (2012) New development in freefem++. J Numer Math 20(3–4):251–256. doi:10.1515/jnum-2012-0013
Ivorra A (2010) Tissue electroporation as a bioelectric phenomenon: basic concepts. In: Rubinsky B (ed) Irreversible Electroporation. Springer, Berlin/Heidelberg, pp 23–61
Ivorra A, Al-Sakere B, Rubinsky B, Mir L (2009) In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 54:5949–5963. doi:10.1088/0031-9155/54/19/019
Jaffray D, Kupelian P, Djemil T, Macklis RM (2007) Review of image-guided radiation therapy. Expert Rev Anticancer Ther 7:89–103. doi:10.1586/14737140.7.1.89
Jiang C, Davalos R, Bischof J (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–20. doi:10.1109/TBME.2014.2367543
Kos B, Voigt P, Miklavcic D, Moche M (2015) Careful treatment planning enables safe ablation of liver tumors adjacent to major blood vessels by percutaneous irreversible electroporation (IRE). Radiol Oncol 49:234–241. doi:10.1515/raon-2015-0031
Kotnik T, Kramar P, Pucihar G et al (2012) Cell membrane electroporation – part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23
Marčan M, Pavliha D, Kos B et al (2015) Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments. Biomed Eng Online 14(Suppl 3):S4. doi:10.1186/1475-925X-14-S3-S4
Martin RCG (2013) Irreversible electroporation of locally advanced pancreatic head adenocarcinoma. J Gastrointest Surg 17:1850–1856. doi:10.1007/s11605-013-2309-z
Miklavčič D, Mali B, Kos B et al (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29. doi:10.1186/1475-925X-13-29
Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Electrochemotherapy potentiation of antitumor effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72
Narayanan G, Doshi MH (2016) Irreversible electroporation (IRE) in renal tumors. Curr Urol Rep 17:15. doi:10.1007/s11934-015-0571-1
Onik G, Mikus P, Rubinsky B (2007) Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 6:295–300
O’Rourke AP, Lazebnik M, Bertram JM et al (2007) Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 52:4707–4719. doi:10.1088/0031-9155/52/15/022
Pavliha D, Kos B, Županič A et al (2012) Patient-specific treatment planning of electrochemotherapy: procedure design and possible pitfalls. Bioelectrochemistry 87:265–273. doi:10.1016/j.bioelechem.2012.01.007
Peyman A, Kos B, Djokić M et al (2015) Variation in dielectric properties due to pathological changes in human liver. Bioelectromagnetics 36:603–612. doi:10.1002/bem.21939
Pucihar G, Krmelj J, Reberšek M et al (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288. doi:10.1109/TBME.2011.2167232
Sel D, Lebar A, Miklavcic D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781. doi:10.1109/TBME.2006.889196
Thomson KR, Cheung W, Ellis SJ et al (2011) Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 22:611–621. doi:10.1016/j.jvir.2010.12.014
Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440. doi:10.1088/0031-9155/57/17/5425
Županič A, Miklavčič D (2010) Optimization and numerical modeling in irreversible electroporation treatment planning. In: Rubinsky B (ed) Irreversible Electroporation. Springer, Berlin/ Heidelberg, pp 203–222
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Kos, B. (2017). Treatment Planning for Electrochemotherapy and Irreversible Electroporation of Deep-Seated Tumors. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-32886-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-32886-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32885-0
Online ISBN: 978-3-319-32886-7
eBook Packages: EngineeringReference Module Computer Science and Engineering