Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Strong Reductions for Extended Formulations

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

Abstract

We generalize the reduction mechanism between linear programming problems from [1] in two ways (1) relaxing the requirement of affineness, and (2) extending to fractional optimization problems.

As applications we provide several new LP-hardness and SDP-hardness results, e.g., for the SparsestCut problem, the BalancedSeparator problem, the MaxCut problem and the Matching problem on 3-regular graphs. We also provide a new, very strong Lasserre integrality gap for the IndependentSet problem, which is strictly greater than the best known LP approximation, showing that the Lasserre hierarchy does not always provide the tightest SDP relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun, G., Pokutta, S., Zink, D.: Inapproximability of combinatorial problems via small LPs and SDPs (2015)

    Google Scholar 

  2. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rothvoß, T.: The matching polytope has exponential extension complexity. In: Proceedings of STOC, pp. 263–272 (2014)

    Google Scholar 

  4. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. J. ACM (2015, to appear)

    Google Scholar 

  5. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite programming relaxations. arXiv preprint arXiv:1411.6317 (2014)

  6. Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approximates Vertex Cover within a factor \(2-\varepsilon \). arXiv preprint arXiv:1503.00753 (2015)

  7. Pashkovich, K.: Extended Formulations for Combinatorial Polytopes. Ph.D. thesis. Magdeburg Universität (2012)

    Google Scholar 

  8. Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear programs (beyond hierarchies). In: 53rd IEEE Symposium on Foundations of Computer Science (FOCS 2012), pp. 480–489 (2012)

    Google Scholar 

  9. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large LP relaxations. In: IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS 2013), pp. 350–359. IEEE (2013)

    Google Scholar 

  10. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 593–602. IEEE (2008)

    Google Scholar 

  11. Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams relaxations. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 283–292. ACM (2009)

    Google Scholar 

  12. Tulsiani, M.: CSP gaps and reductions in the Lasserre hierarchy. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 303–312. ACM (2009)

    Google Scholar 

  13. Au, Y.H., Tunçel, L.: A comprehensive analysis of polyhedral lift-and-project methods. arXiv preprint (2013). arXiv:1312.5972

  14. Lipták, L., Tunçel, L.: The stable set problem and the lift-and-project ranks of graphs. Math. Program. 98(1–3), 319–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stephen, T., Tuncel, L.: On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolman, P., KouteckĂ˝, M., Tiwary, H.R.: Extension complexity, MSO logic, and treewidth. CoRR abs/1507.04907 (2015)

    Google Scholar 

  17. Gupta, A., Talwar, K., Witmer, D.: Sparsest cut on bounded treewidth graphs: algorithms and hardness results. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 281–290. ACM (2013)

    Google Scholar 

  18. Arora, S., Lee, J., Naor, A.: Euclidean distortion and the sparsest cut. J. Am. Math. Soc. 21(1), 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheeger, J., Kleiner, B., Naor, A.: A \(({\rm log}\, n)^{\Omega (1)}\) integrality gap for the sparsest cut SDP. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 555–564. IEEE (2009)

    Google Scholar 

  20. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Comput. Complex. 15(2), 94–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Au, Y.H., Tunçel, L.: Complexity analyses of Bienstock–Zuckerberg and Lasserre relaxations on the matching and stable set polytopes. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 14–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 388–405 (2012)

    Google Scholar 

Download references

Acknowledgements

Research reported in this paper was partially supported by NSF CAREER award CMMI-1452463. Parts of this research was conducted at the CMO-BIRS 2015 workshop Modern Techniques in Discrete Optimization: Mathematics, Algorithms and Applications and we would like to thank the organizers for providing a stimulating research environment, as well as Levent Tunçel for helpful discussions on Lasserre relaxations of the IndependentSet problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Braun, G., Pokutta, S., Roy, A. (2016). Strong Reductions for Extended Formulations. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics