Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Storing, querying, and analyzing spatio-temporal data are becoming increasingly important, as the availability of volumes of spatio-temporal data increases. One important class of spatio-temporal analysis is computing spatio-temporal queries similarity. In this paper, we focus on assessing the similarity between Spatio-Temporal OLAP queries in term of their GeoMDX queries. However, the problem of measuring Spatio-Temporal OLAP queries similarity has not been studied so far.Therefore, we aim at filling this gap by proposing a novel similarity measure. The proposed measure can be used either in developing query recommendation, personalization systems or speeding-up query evolution. It takes into account the temporal similarity and the basic components of spatial similarity assessment relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aissi, S., Gouider, M.S.: Spatial and spatio-temporal multidimensional data modelling: survey. CoRR abs/1208.0163 (2012)

    Google Scholar 

  2. Aissi, S., Gouider, M., Sboui, T., Bensaid, L.: Enhancing spatial datacube exploitation. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 121–133. Springer, Switzerland (2014)

    Google Scholar 

  3. Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E.: Similarity measures for OLAP sessions. Knowl. Inf. Syst. 39(2), 463–489 (2014)

    Article  Google Scholar 

  4. Bank, J., Cole, B.: Calculating the jaccard similarity coefficient with map reduce for entity pairs in wikipedia, December 2008

    Google Scholar 

  5. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization framework for OLAP queries. In: ACM 8th International Workshop on Data Warehousing and OLAP, DOLAP 2005, Bremen, Germany, 4–5 November 2005, pp. 9–18 (2005)

    Google Scholar 

  6. Bellatreche, L., Mouloudi, H., Giacometti, A., Marcel, P.: Personalization of MDX queries. In: 22èmes Journées Bases de Données Avancées, BDA 2006, Lille, 17–20 Octobre 2006, Actes (Informal Proceedings) (2006)

    Google Scholar 

  7. Bruns, H.T., Egenhofer, M.J.: Similarity of spatial scenes. In: 7th Symposium on Spatial Data Handling, pp. 31–42 (1996)

    Google Scholar 

  8. Chang, J.-W., Bista, R., Kim, Y.-C., Kim, Y.-K.: Spatio-temporal similarity measure algorithm for moving objects on spatial networks. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 1165–1178. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks, pp. 73–78 (2003)

    Google Scholar 

  10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for OLAP discovery-driven analysis. IJDWM 7(2), 1–25 (2011)

    Google Scholar 

  12. Glorio, O., Mazón, J.N., Garrigós, I., Trujillo, J.: A personalization process for spatial data warehouse development. Decis. Support Syst. 52(4), 884–898 (2012)

    Article  Google Scholar 

  13. Gorawski, M.: Extended cascaded star schema and ECOLAP operations for spatial data warehouse. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 251–259. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Gorawski, M.: Multiversion spatio-temporal telemetric data warehouse. In: Grundspenkis, J., Kirikova, M., Manolopoulos, Y., Novickis, L. (eds.) ADBIS 2009. LNCS, vol. 5968, pp. 63–70. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Jerbi, H.: Personnalisation danalyses dcisionnelles sur des donnes multidimensionnelles. Ph.D. thesis, Institut de Recherche en Informatique de Toulouse UMR 5505, France (2012)

    Google Scholar 

  16. Layouni, O., Akaichi, J.: A novel approach for a collaborative exploration of a spatial data cube. IJCCE: Int. J. Comput. Commun. Eng. 3(1), 63–68 (2014)

    Article  Google Scholar 

  17. Li, B., Fonseca, F.: TDD: a comprehensive model for qualitative spatial similarity assessment. Spat. Cogn. Comput. 6(1), 31–62 (2006)

    Google Scholar 

  18. Marcel, P., Missaoui, R., Rizzi, S.: Towards intensional answers to OLAP queries for analytical sessions. In: ACM 15th International Workshop on Data Warehousing and OLAP, DOLAP 2012, Maui, HI, USA, 2 November 2012, pp. 49–56 (2012)

    Google Scholar 

  19. Moreau, E., Yvon, F., Cappé, O.: Robust similarity measures for named entities matching. In: Proceedings of the 22nd International Conference on Computational Linguistics, COLING 2008, vol. 1. pp. 593–600. Association for Computational Linguistics, Stroudsburg (2008)

    Google Scholar 

  20. Negre, E.: Exploration collaborative de cubes de donnes. Ph.D. thesis, Universit Franois Rabelais of Tours, France (2009)

    Google Scholar 

  21. Sapia, C.: On modeling and predicting query behavior in OLAP systems. In: Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW 1999), pp. 1–10. Swiss Life (1999)

    Google Scholar 

  22. Sapia, C.: PROMISE: predicting query behavior to enable predictive caching strategies for OLAP systems. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 224–233. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Sapia, C., Alexander, F.: Promise: modeling and predicting user behavior for online analytical processing applications. Ph.D. Thesis submitted, Technische Universitt Mnchen (2001)

    Google Scholar 

  24. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB 1999, pp. 42–53. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  25. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: VLDB, pp. 307–316. Morgan Kaufmann (2000)

    Google Scholar 

  26. Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In: Proceedings of the 27th International Conference on Very Large Data Bases, VLDB 2001, pp. 531–540. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  27. Tranchant, M.: Capacits des outils solap en termes de requêtes spatiales, temporelles et spatio-temporelles. Technical report, Conservatoire National des Arts et Metiers Centre Regional Rhône- Alpes Centre Denseignement de Grenoble (2011)

    Google Scholar 

  28. Yan, H., Li, J.: Spatial Similarity Relations in Multi-scale Map Spaces. Springer, Switzerland (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Layouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Layouni, O., Akaichi, J. (2016). New Similarity Measure for Spatio-Temporal OLAP Queries. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34099-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34098-2

  • Online ISBN: 978-3-319-34099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics