Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A MAS Approach for Group Recommendation Based on Negotiation Techniques

  • Conference paper
  • First Online:
Advances in Practical Applications of Scalable Multi-agent Systems. The PAAMS Collection (PAAMS 2016)

Abstract

Providing recommendation to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to the group as a whole, but satisfying all group members in an even way still remains as a challenge. We propose a multi-agent approach based on negotiation techniques for group recommendation. In this approach we use the multilateral monotonic concession protocol to combine individual recommendations into a group recommendation. We applied our proposal in the movies domain. The results obtained indicate that using this negotiation protocol, users in the groups were more evenly satisfied than with traditional ranking aggregation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Personalized User-centered Multi-Agent Systems, name of the supporting project.

  2. 2.

    Although this generalization might lead to deadlock, some ways around to avoid the problem can be exploited.

  3. 3.

    The demonstration follows from that for Utilitarian concession [6].

  4. 4.

    http://www.duineframework.org/.

  5. 5.

    http://grouplens.org/datasets/movielens/.

References

  1. Baltrunas, L., Makcinskas, T., Ricci, F.: Group recommendations with rank aggregation and collaborative filtering. In: Proceedings of the RecSys 2010, pp. 119–126. ACM (2010)

    Google Scholar 

  2. Bedi, P., Agarwal, S.K., Jindal, V., Richa: MARST: multi-agent recommender system for e-tourism using reputation based collaborative filtering. In: Madaan, A., Kikuchi, S., Bhalla, S. (eds.) DNIS 2014. LNCS, vol. 8381, pp. 189–201. Springer, Heidelberg (2014)

    Google Scholar 

  3. Bekkerman, P., Sarit, K., Ricci, F.: Applying cooperative negotiation methodology to group recommendation problem. In: ECAI Workshop on Recommender Systems (2006)

    Google Scholar 

  4. Cantador, I., Castells, P.: Group recommender systems: new perspectives in the social web. In: Cantador, I., Castells, P. (eds.) Recommender Systems for the Social Web. Intelligent Systems Reference Library, vol. 32, pp. 139–157. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Christensen, I., Schiaffino, S.: A hybrid approach for group profiling in recommender systems. J. Univ. Comput. Sci. 20(4), 507–533 (2014)

    Google Scholar 

  6. Endriss, U.: Monotonic concession protocols for multilateral negotiation. In: Proceedings of the AAMAS 2006, pp. 392–399. ACM, New York (2006)

    Google Scholar 

  7. Garcia, I., Sebastia, L.: A negotiation framework for heterogeneous group recommendation. Expert Syst. Appl. 41(4, 1), 1245–1261 (2014)

    Article  Google Scholar 

  8. Garcia, I., Sebastia, L., Onaindia, E.: A negotiation approach for group recommendation. In: Proceedings of the International Conference on Artificial Intelligence, pp. 919–925 (2009)

    Google Scholar 

  9. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Masthoff, J.: Group modeling: selecting a sequence of television items to suit a group of viewers. User Model. User-Adap. Inter. 14(1), 37–85 (2004)

    Article  Google Scholar 

  11. Masthoff, J.R.: Group recommender systems: combining individual models. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 677–702. Springer, New York (2011)

    Chapter  Google Scholar 

  12. Morais, A.J., Oliveira, E., Jorge, A.M.: A multi-agent recommender system. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 281–288. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Mukherjee, R., Sajja, N., Sen, S.: A movie recommendation system - an application of voting theory in user modeling. User Model. User-Adap. Inter. 13(1–2), 5–33 (2003)

    Article  Google Scholar 

  14. O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: PolyLens: a recommender system for groups of users. In: Prinz, W., Jarke, M., Rogers, Y., Schmidt, K., Wulf, V. (eds.) ECSCW 2001, pp. 199–218. Kluwer Academic Publishers, Netherlands (2001)

    Google Scholar 

  15. Ricci, F., Rokach, L., Shapira, B., Kantor, P.: Recommender Systems Handbook. Springer, New York (2010)

    MATH  Google Scholar 

  16. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter Designing Conventions for Automated Negotiation Among Computers. MIT Press, Cambridge (1994)

    Google Scholar 

  17. Skocir, P., Marusic, L., Marusic, M., Petric, A.: The MARS – a multi-agent recommendation system for games on mobile phones. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp. 104–113. Springer, Heidelberg (2012)

    Google Scholar 

  18. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hoboken (2009)

    Google Scholar 

  19. Zeuthen, F.L.B.: Problems of Monopoly and Economic Warfare. Routledge and Sons, London (1930)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by projects PICT2011-0366, PIP112-201101-00078, and by “PUMAS” CONICET-CNRS cooperation project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Schiaffino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Villavicencio, C., Schiaffino, S., Diaz-Pace, J.A., Monteserin, A., Demazeau, Y., Adam, C. (2016). A MAS Approach for Group Recommendation Based on Negotiation Techniques. In: Demazeau, Y., Ito, T., Bajo, J., Escalona, M. (eds) Advances in Practical Applications of Scalable Multi-agent Systems. The PAAMS Collection. PAAMS 2016. Lecture Notes in Computer Science(), vol 9662. Springer, Cham. https://doi.org/10.1007/978-3-319-39324-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39324-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39323-0

  • Online ISBN: 978-3-319-39324-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics