Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Accelerating Oblivious Transfer with Batch Multi-exponentiation

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9722))

Included in the following conference series:

Abstract

More and more people use smart end devices to retrieve digital items and purchase on the Internet. Oblivious transfer (OT) is a fundamental tool to protect user privacy in such applications. Most existing works devote to improving the communication performance of OT protocols; few work has been done to improve the computation efficiency. Modular exponentiation is the most frequent operation in OT protocols. It is known that the computation cost of any OT protocol must be linear with the database size; speeding up the exponentiations is critical for OT protocols to be deployed in practice. To this end, we investigate batch multi-exponentiation algorithms and propose two new algorithms. Then we apply our batch multi-exponentiation algorithms to acceleration of OT protocols. Our approach is especially useful for the k-out-n OT. We also exploit the algorithm to speed up simultaneous execution of 1-out-n OT protocols which we called batch OT. We conduct a series of experiments and the experimental results show that our approach is effective and can significantly accelerate OT protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Avanzi, R.M.: On multi-exponentiation in cryptography. Cryptology ePrint Archive, Report 2002/154 (2002)

    Google Scholar 

  3. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)

    Google Scholar 

  5. Bos, J.N.E., Coster, M.J.: Addition chain heuristics. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)

    Google Scholar 

  6. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  7. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  8. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signatures. J. Cryptol. 25(4), 723–747 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cheon, J.H., Kim, Y., Yoon, H.: A new ID-based signature with batch verification. Cryptology ePrint Archive, Report 2004/131 (2004)

    Google Scholar 

  10. Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 172–183. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Chung, B., Hur, J., Kim, H., Hong, S.M., Yoon, H.: Improved batch exponentiation. Inf. Process. Lett. 109(15), 832–837 (2009)

    Article  MathSciNet  Google Scholar 

  12. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)

    Google Scholar 

  13. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and fast algorithms for multiexponentiations. IEEE Trans. Comput. 49(2), 141–147 (2000)

    Article  MathSciNet  Google Scholar 

  14. Downey, P., Leong, B., Sethi, R.: Computing sequences with addition chains. SIAM J. Comput. 10(3), 638–646 (1981)

    Article  MathSciNet  Google Scholar 

  15. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Google Scholar 

  16. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  17. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signature batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 309–324. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 175–185. Springer, Heidelberg (1990)

    Google Scholar 

  19. Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

    Google Scholar 

  20. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1), 129–146 (1998)

    Article  MathSciNet  Google Scholar 

  21. Hong, S.-M., Oh, S.-Y., Yoon, H.: New modular multiplication algorithms for fast modular exponentiation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 166–177. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  22. Hwang, M.S., Lin, I.C., Hwang, K.F.: Cryptanalysis of the batch verifying multiple RSA digital signatures. Inform. Lith. Acad. Sci. 11(1), 15–19 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 20–31. ACM (1988)

    Google Scholar 

  24. Kilian, J.: A general completeness theorem for two party games. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pp. 553–560. ACM (1991)

    Google Scholar 

  25. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)

    Article  MathSciNet  Google Scholar 

  26. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley Professional, Boston (2014)

    Google Scholar 

  27. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  28. Lou, D.C., Lai, J.C., Wu, C.L., Chang, T.J.: An efficient montgomery exponentiation algorithm by using signed-digit-recoding and folding techniques. Appl. Math. Comput. 185(1), 31–44 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Hwang, M.-S., Lee, C.-C., Tang, Y.-L.: Two Simple batch verifying multiple digital signatures. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 233–237. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  Google Scholar 

  31. M’Raïhi, D., Naccache, D.: Batch exponentiation: a fast DLP-based signature generation strategy. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, CCS 1996, pp. 58–61. ACM, New York (1996)

    Google Scholar 

  32. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  33. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457. Society for Industrial and Applied Mathematics (2001)

    Google Scholar 

  34. Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complex. 20(2), 356–371 (2004)

    Article  MathSciNet  Google Scholar 

  35. Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. 9(2), 230–250 (1980)

    Article  MathSciNet  Google Scholar 

  36. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report TR-81, Aiken Computation Laboratory, Havard University (1981)

    Google Scholar 

  37. de Rooij, P.: Efficient exponentiation using precomputation and vector addition chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  38. Solinas, J.: Low-weight binary representations for pairs of integers. Technical report, CORR 2001–41, Department of C&O, University of Waterloo (2001)

    Google Scholar 

  39. Sun, Y., Wu, Q., Qin, B., Wang, Y., Liu, J.: Batch blind signatures on elliptic curves. In: Lopez, J., Wu, Y. (eds.) Information Security Practice and Experience. LNCS, vol. 9065, pp. 192–206. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  40. Tzeng, W.-G.: Efficient 1-out-n oblivious transfer schemes. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 159–171. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  41. Wu, C.L., Lou, D.C., Lai, J.C., Chang, T.J.: Fast modular multi-exponentiation using modified complex arithmetic. Appl. Math. Comput. 186(2), 1065–1074 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Wu, Q., Sun, Y., Qin, B., Hu, J., Liu, W., Liu, J., Ding, Y.: Batch public key cryptosystem with batch multi-exponentiation. Future Gener. Comput. Syst. (2015)

    Google Scholar 

  43. Yao, A.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, 1986, pp. 162–167. IEEE (1986)

    Google Scholar 

  44. Yen, S.M., Laih, C.S., Lenstra, A.K.: Multi-exponentiation (cryptographic protocols). Comput. Digital Techn. 141(6), 325–326 (1994)

    Article  Google Scholar 

  45. Zhang, C., Lu, R., Lin, X., Ho, P.H., Shen, X.: An efficient identity-based batch verification scheme for vehicular sensor networks. In: The 27th Conference on Computer Communications, INFOCOM 2008, pp. 816–824. IEEE, April 2008

    Google Scholar 

Download references

Acknowledgment

This paper is partially supported by the National Key Basic Research Program (973 program) through project 2012CB315905, by the National High Technology Research and Development Program of China (863 Program) through project 2015AA017205, by the Natural Science Foundation of China through projects 61370190, 61173154, 61272501, 61402029, 61472429, 61202465 and 61532021, by the Beijing Natural Science Foundation through project 4132056, by the Guangxi natural science foundation through project 2013GXNSFBB053005, the Innovation Fund of China Aerospace Science and Technology Corporation, Satellite Application Research Institute through project 2014-CXJJ-TX-10, the Open Project of Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, Y. et al. (2016). Accelerating Oblivious Transfer with Batch Multi-exponentiation. In: Liu, J., Steinfeld, R. (eds) Information Security and Privacy. ACISP 2016. Lecture Notes in Computer Science(), vol 9722. Springer, Cham. https://doi.org/10.1007/978-3-319-40253-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40253-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40252-9

  • Online ISBN: 978-3-319-40253-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics