Abstract
Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as “most” and “a few”. In this paper, we define the syntax and semantics of PSL\(^Q\), a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL\(^Q\) is the first SRL framework that combines soft quantifiers with first-order logic rules for modeling uncertain relational data. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code available at http://psl.umiacs.umd.edu.
- 2.
References
Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields and probabilistic soft logic. [cs.LG] (2015). arXiv:1505.04406
Bach, S.H., Huang, B., London, B., Getoor, L.: Hinge-loss Markov random fields: convex inference for structured prediction. In: Proceedings of the Uncertainty in Artificial Intelligence (UAI) (2013)
Beltagy, I., Erk, K.: On the proper treatment of quantifiers in probabilistic logic semantics. In: Proceedings of the 11th International Conference on Computational Semantics (IWCS), p. 140 (2015)
Beltagy, I., Erk, K., Mooney, R.J.: Probabilistic soft logic for semantic textual similarity. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1210–1219 (2014)
Bobillo, F., Straccia, U.: fuzzyDL: an expressive fuzzy description logic reasoner. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 923–930 (2008)
Cao, T.H., Rossiter, J.M., Martin, T.P., Baldwin, J.F.: On the implementation of fril++ for object-oriented logic programming with uncertainty and fuzziness. In: Bouchon-Meunier, B., Gutiérrez-Ríos, J., Magdalena, L., Yager, R.R. (eds.) Technologies for Constructing Intelligent Systems 2. Studies in Fuzziness and Soft Computing, vol. 90, pp. 393–406. Springer, Heidelberg (2002)
Collins, M.: Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In: Proceedings of the International Conference on Empirical methods in Natural Language Processing (ACL), pp. 1–8 (2002)
Delgado, M., Sánchez, D., Vila, M.A.: Fuzzy cardinality based evaluation of quantified sentences. Int. J. Approximate Reason. 1, 23–66 (2000)
Fakhraei, S., Huang, B., Raschid, L., Getoor, L.: Network-based drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 775–787 (2014)
Farnadi, G., Bach, S.H., Moens, M.F., Getoor, L., De Cock, M.: Extending psl with fuzzy quantifiers. In: Proceedings of the Fourth International Workshop on Statistical Relational, AI at AAAI (StarAI) (2014)
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT press, Cambridge (2007)
Heider, F.: The Psychology of Interpersonal Relations. Wiley, New York (1958)
Huang, B., Kimmig, A., Getoor, L., Golbeck, J.: A flexible framework for probabilistic models of social trust. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 265–273. Springer, Heidelberg (2013)
Isbell, J.R., Marlow, W.H.: Attrition games. Naval Res. Logistics Q. 3(1–2), 71–94 (1956)
Jain, D., Barthels, A., Beetz, M.: Adaptive Markov logic networks: learning statistical relational models with dynamic parameters. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 937–942 (2010)
Kazemi, S.M., Buchman, D., Kersting, K., Natarajan, S., Poole, D.: Relational logistic regression. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR) (2014)
Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995)
Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the 28th ACM Conference on Human Factors in Computing Systems (CHI) (2010)
Lowd, D., Domingos, P.: Recursive random fields. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 950–955 (2007)
Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of the International Conference on Artificial Intelligence (AAAi) 8, 1062–1068 (2008)
Muggleton, S., De Raedt, L.: Inductive Logic Programming: Theory and Methods. J. Logic Program. 19(20), 629–679 (1994)
Poole, D., Buchman, D., Kazemi, S.M., Kersting, K., Natarajan, S.: Population size extrapolation in relational probabilistic modelling. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 292–305. Springer, Heidelberg (2014)
Poole, D., Buchman, D., Natarajan, S., Kersting, K.: Aggregation and population growth: the relational logistic regression and Markov logic cases. In: Proceedings of the International Workshop on Statistical Relational AI at UAI (StarAI) (2012)
Prade, H., Richard, G., Serrurier, M.: Learning first order fuzzy logic rules. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715. Springer, Heidelberg (2003)
Pujara, J., Miao, H., Getoor, L., Cohen, W.: Knowledge graph identification. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 542–557. Springer, Heidelberg (2013)
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
Van den Broeck, G., Meert, W., Darwiche, A.: Skolemization for weighted first-order model counting (2013). arXiv:1312.5378
Victor, P., Cornelis, C., De Cock, M.: Trust and recommendations. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 645–675. Springer, Heidelberg (2011)
West, R., Paskov, H.S., Leskovec, J., Potts, C.: Exploiting social network structure for person-to-person sentiment analysis. Trans. Assoc. Comput. Linguist. (TACL) 2, 297–310 (2014)
Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. (IEEE SMC) 1, 183–190 (1988)
Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 1, 149–184 (1983)
Acknowledgements
We would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was funded in part by the SBO-program of the Flemish Agency for Innovation by Science and Technology (IWT-SBO-Nr. 110067) and NSF grant IIS1218488. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Farnadi, G., Bach, S.H., Blondeel, M., Moens, MF., Getoor, L., De Cock, M. (2016). Statistical Relational Learning with Soft Quantifiers. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-40566-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40565-0
Online ISBN: 978-3-319-40566-7
eBook Packages: Computer ScienceComputer Science (R0)