Abstract
In many decision making scenarios, fuzzy expert systems have been useful to deduce a more conceptual knowledge from data. With the emergence of the Internet of Things and the growing presence of cloud-based architectures, it is necessary to improve fuzzy expert systems to support higher level operators, large rule bases and an abundant flow of inputs.
In this paper, we present a modular fuzzy expert system which takes data or event streams in input and which outputs decisions on the fly. Its architecture relies on both a graph-based representation of the rule base and the cooperation of four customizable modules. Stress tests regarding the number of rules have been carried out to characterize its efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acampora, G., Loia, V.: Fuzzy control interoperability and scalability for adaptive domotic framework. IEEE Trans. Industr. Inf. 1(2), 97–111 (2005)
Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.: Complex event processing under uncertainty: a short survey. In: Fischer, P.M., Alonso, G., Arenas, M., Geerts, F. (eds.) Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference. CEUR Workshop Proceedings, vol. 1330, pp. 97–103. CEUR-WS.org (2015)
Artikis, A., Baber, C., Bizarro, P.: Canudas-de Wit, C., Etzion, O., Fournier, F., Goulart, P., Howes, A., Lygeros, J., Paliouras, G., Schuster, A., Sharfman, I.: Scalable proactive event-driven decision making. IEEE Technol. Soc. Mag. 33(3), 35–41 (2014)
Basterretxea, K., Del Campo, I.: Electronic hardware for fuzzy computation. In: Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, pp. 1–30. Information Science Reference (2010)
Basterretxea, K., Tarela, J.M., de Campo, I., Bosque, G.: An experimental study on nonlinear function computation for neural/fuzzy hardware design. IEEE Trans. Neural Netw. 18(1), 266–283 (2007)
Bloch, I.: Fuzzy spatial relationships for image processing and interpretation: a review. Image Vis. Comput. 23(2), 89–110 (2005)
Cariñena, P., BugarÃn, A., Mucientes, M., Barro, S.: A language for expressing fuzzy temporal rules. Mathware Soft Comput. 7(2–3), 213–227 (2000)
Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)
Garibaldi, J.M.: Fuzzy expert systems. In: Gabrys, B., Leiviskä, K., Strackeljan, J. (eds.) Do Smart Adaptive Systems Exist? Best Practice for Selection and Combination of Intelligent Methods. STUDFUZZ, vol. 173, pp. 105–132. Springer, Heidelberg (2005)
Harvey III., N.R.H.L., Keller, J.M., Anderson, D.: Speedup of fuzzy logic through stream processing on graphics processing units. IEEE Congress on Evolutionary Computation, pp. 3809–3815 (2008)
Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)
Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges for data stream mining research. SIGKDD Explor. Newsl. 16(1), 1–10 (2014)
Laurent, A., Lesot, M.J. (eds.): Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. Information Science Reference (2010)
Le Yaouanc, J.-M., Poli, J.-P.: A fuzzy spatio-temporal-based approach for activity recognition. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 314–323. Springer, Heidelberg (2012)
Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co. Inc., Boston (2001)
Poli, J.P., Boudet, L.: Online temporal reasoning for event and data streams processing. In: 2016 IEEE Conference on Fuzzy Systems, FUZZ-IEEE (2016) (to appear)
Preiss, B.R.: Data Structures and Algorithms with Object-Oriented Design Patterns in Java. Worldwide Series in Computer Science. Wiley, New York (2000)
Reznik, L.: Fuzzy Controllers Handbook. Newnes, Oxford (1997)
Schockaert, S., Cock, M.D., Kerre, E.: Reasoning About Fuzzy Temporal and Spatial Information from the Web. World Scientific, Singapore (2010)
Siler, W., Buckley, J.: Fuzzy Expert Systems and Fuzzy Reasoning. Wiley-Interscience, Hoboken (2005)
Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C.P.L.F., Gama, J.: Data stream clustering: a survey. ACM Comput. Surv. 46(1), 13:1–13:31 (2013)
Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream processing. SIGMOD Rec. 34(4), 42–47 (2005)
Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 407–418. ACM, New York (2006)
Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Poli, JP., Boudet, L. (2016). A Modular Fuzzy Expert System Architecture for Data and Event Streams Processing. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-40581-0_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40580-3
Online ISBN: 978-3-319-40581-0
eBook Packages: Computer ScienceComputer Science (R0)