Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Modular Fuzzy Expert System Architecture for Data and Event Streams Processing

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

In many decision making scenarios, fuzzy expert systems have been useful to deduce a more conceptual knowledge from data. With the emergence of the Internet of Things and the growing presence of cloud-based architectures, it is necessary to improve fuzzy expert systems to support higher level operators, large rule bases and an abundant flow of inputs.

In this paper, we present a modular fuzzy expert system which takes data or event streams in input and which outputs decisions on the fly. Its architecture relies on both a graph-based representation of the rule base and the cooperation of four customizable modules. Stress tests regarding the number of rules have been carried out to characterize its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acampora, G., Loia, V.: Fuzzy control interoperability and scalability for adaptive domotic framework. IEEE Trans. Industr. Inf. 1(2), 97–111 (2005)

    Article  Google Scholar 

  2. Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.: Complex event processing under uncertainty: a short survey. In: Fischer, P.M., Alonso, G., Arenas, M., Geerts, F. (eds.) Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference. CEUR Workshop Proceedings, vol. 1330, pp. 97–103. CEUR-WS.org (2015)

    Google Scholar 

  3. Artikis, A., Baber, C., Bizarro, P.: Canudas-de Wit, C., Etzion, O., Fournier, F., Goulart, P., Howes, A., Lygeros, J., Paliouras, G., Schuster, A., Sharfman, I.: Scalable proactive event-driven decision making. IEEE Technol. Soc. Mag. 33(3), 35–41 (2014)

    Article  Google Scholar 

  4. Basterretxea, K., Del Campo, I.: Electronic hardware for fuzzy computation. In: Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, pp. 1–30. Information Science Reference (2010)

    Google Scholar 

  5. Basterretxea, K., Tarela, J.M., de Campo, I., Bosque, G.: An experimental study on nonlinear function computation for neural/fuzzy hardware design. IEEE Trans. Neural Netw. 18(1), 266–283 (2007)

    Article  Google Scholar 

  6. Bloch, I.: Fuzzy spatial relationships for image processing and interpretation: a review. Image Vis. Comput. 23(2), 89–110 (2005)

    Article  Google Scholar 

  7. Cariñena, P., Bugarín, A., Mucientes, M., Barro, S.: A language for expressing fuzzy temporal rules. Mathware Soft Comput. 7(2–3), 213–227 (2000)

    MATH  Google Scholar 

  8. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

    Article  Google Scholar 

  9. Garibaldi, J.M.: Fuzzy expert systems. In: Gabrys, B., Leiviskä, K., Strackeljan, J. (eds.) Do Smart Adaptive Systems Exist? Best Practice for Selection and Combination of Intelligent Methods. STUDFUZZ, vol. 173, pp. 105–132. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Harvey III., N.R.H.L., Keller, J.M., Anderson, D.: Speedup of fuzzy logic through stream processing on graphics processing units. IEEE Congress on Evolutionary Computation, pp. 3809–3815 (2008)

    Google Scholar 

  11. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  12. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges for data stream mining research. SIGKDD Explor. Newsl. 16(1), 1–10 (2014)

    Article  Google Scholar 

  13. Laurent, A., Lesot, M.J. (eds.): Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. Information Science Reference (2010)

    Google Scholar 

  14. Le Yaouanc, J.-M., Poli, J.-P.: A fuzzy spatio-temporal-based approach for activity recognition. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee, M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 314–323. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co. Inc., Boston (2001)

    Google Scholar 

  16. Poli, J.P., Boudet, L.: Online temporal reasoning for event and data streams processing. In: 2016 IEEE Conference on Fuzzy Systems, FUZZ-IEEE (2016) (to appear)

    Google Scholar 

  17. Preiss, B.R.: Data Structures and Algorithms with Object-Oriented Design Patterns in Java. Worldwide Series in Computer Science. Wiley, New York (2000)

    Google Scholar 

  18. Reznik, L.: Fuzzy Controllers Handbook. Newnes, Oxford (1997)

    Google Scholar 

  19. Schockaert, S., Cock, M.D., Kerre, E.: Reasoning About Fuzzy Temporal and Spatial Information from the Web. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  20. Siler, W., Buckley, J.: Fuzzy Expert Systems and Fuzzy Reasoning. Wiley-Interscience, Hoboken (2005)

    MATH  Google Scholar 

  21. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C.P.L.F., Gama, J.: Data stream clustering: a survey. ACM Comput. Surv. 46(1), 13:1–13:31 (2013)

    Article  MATH  Google Scholar 

  22. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream processing. SIGMOD Rec. 34(4), 42–47 (2005)

    Article  Google Scholar 

  23. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 407–418. ACM, New York (2006)

    Google Scholar 

  24. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Poli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Poli, JP., Boudet, L. (2016). A Modular Fuzzy Expert System Architecture for Data and Event Streams Processing. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40581-0_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40580-3

  • Online ISBN: 978-3-319-40581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics