Abstract
In this paper, we propose a framework for viewing solver branching heuristics as optimization algorithms where the objective is to maximize the learning rate, defined as the propensity for variables to generate learnt clauses. By viewing online variable selection in SAT solvers as an optimization problem, we can leverage a wide variety of optimization algorithms, especially from machine learning, to design effective branching heuristics. In particular, we model the variable selection optimization problem as an online multi-armed bandit, a special-case of reinforcement learning, to learn branching variables such that the learning rate of the solver is maximized. We develop a branching heuristic that we call learning rate branching or LRB, based on a well-known multi-armed bandit algorithm called exponential recency weighted average and implement it as part of MiniSat and CryptoMiniSat. We upgrade the LRB technique with two additional novel ideas to improve the learning rate by accounting for reason side rate and exploiting locality. The resulting LRB branching heuristic is shown to be faster than the VSIDS and conflict history-based (CHB) branching heuristics on 1975 application and hard combinatorial instances from 2009 to 2014 SAT Competitions. We also show that CryptoMiniSat with LRB solves more instances than the one with VSIDS. These experiments show that LRB improves on state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012)
Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009)
Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)
Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceedings of SAT Competition 2013, pp. 42–43 (2013)
Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)
Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report Series Technical report 10(1) (2010)
Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_29
Brown, R.G.: Exponential smoothing for predicting demand. Oper. Res. 5, 145–145 (1957)
Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generating inputs of death. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 322–335. ACM, New York (2006)
Carvalho, E., Marques-Silva, J.P.: Using rewarding mechanisms for improving branching heuristics. In: Proceedings of the Seventh International Conference on Theory and Applications of Satisfiability Testing (2004)
Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Erev, I., Roth, A.E.: Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88(4), 848–881 (1998)
Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for satisfiability modulo theories. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 1136–1143. AAAI Press (2015)
Gershman, R., Strichman, O.: HaifaSat: a new robust SAT solver. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 76–89. Springer, Heidelberg (2006)
Goldberg, E., Novikov, Y.: BerkMin: a fast and robust sat-solver. Discrete Appl. Math. 155(12), 1549–1561 (2007)
Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math. Artif. Intell. 1(1–4), 167–187 (1990)
Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL procedure for satisfiability. Electron. Notes Discrete Math. 9, 344–359 (2001)
Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuristic for SAT solvers. In: Proceedings of AAAI 2016 (2016)
Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K. (eds.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26287-1_14
Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480. Springer, Heidelberg (2013)
Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)
Marques-Silva, J.P., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington, DC (1996)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 530–535. ACM, New York (2001)
Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 252–268. Springer, Heidelberg (2014)
Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)
Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, pp. 483–504. IOS Press, Amsterdam (2009)
Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis, Simon Fraser University (2004)
Soos, M.: CryptoMiniSat v4. In: SAT Competition, p. 23 (2014)
Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer, Heidelberg (2014)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT Press Cambridge, Massachusetts (1998)
Yechiam, E., Busemeyer, J.R.: Comparison of basic assumptions embedded in learning models for experience-based decision making. Psychon. Bull. Rev. 12(3), 387–402 (2005)
Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2001, pp. 279–285. IEEE Press, Piscataway (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K. (2016). Learning Rate Based Branching Heuristic for SAT Solvers. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-40970-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40969-6
Online ISBN: 978-3-319-40970-2
eBook Packages: Computer ScienceComputer Science (R0)